Detection of SARS-CoV‑2 with Solid-State CRISPR-Cas12a-Assisted Nanopores
The outbreak of the SARS-CoV-2 caused the disease COVID-19 to spread globally. Specific and sensitive detection of SARS-CoV-2 facilitates early intervention and prevents the disease from spreading. Here, we present a solid-state CRISPR-Cas12a-assisted nanopore (SCAN) sensing strategy for the specifi...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-10, Vol.21 (19), p.8393-8400 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The outbreak of the SARS-CoV-2 caused the disease COVID-19 to spread globally. Specific and sensitive detection of SARS-CoV-2 facilitates early intervention and prevents the disease from spreading. Here, we present a solid-state CRISPR-Cas12a-assisted nanopore (SCAN) sensing strategy for the specific detection of SARS-CoV-2. We introduced a nanopore-sized counting method to measure the cleavage ratio of reporters, which is used as a criterion for positive/negative classification. A kinetic cleavage model was developed and validated to predict the reporter size distributions. The model revealed the trade-offs between sensitivity, turnaround time, and false-positive rate of the SARS-CoV-2 SCAN. With preamplification and a 30 min CRISPR Cas12a assay, we achieved excellent specificity against other common human coronaviruses and a limit of detection of 13.5 copies/μL (22.5 aM) of viral RNA at a confidence level of 95%. These results suggested that the SCAN could provide a rapid, sensitive, and specific analysis of SARS-CoV-2. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c02974 |