Near Fermi Superatom State Stabilized by Surface State Resonances in a Multiporous Molecular Network

Two-dimensional honeycomb molecular networks confine a substrate’s surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-08, Vol.21 (15), p.6456-6462
Hauptverfasser: Kawai, Shigeki, Kher-Elden, Mohammad A, Sadeghi, Ali, Abd El-Fattah, Zakaria M, Sun, Kewei, Izumi, Saika, Minakata, Satoshi, Takeda, Youhei, Lobo-Checa, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional honeycomb molecular networks confine a substrate’s surface electrons within their pores, providing an ideal playground to investigate the quantum electron scattering phenomena. Besides surface state confinement, laterally protruding organic states can collectively hybridize at the smallest pores into superatom molecular orbitals. Although both types of pore states could be simultaneously hosted within nanocavities, their coexistence and possible interaction are unexplored. Here, we show that these two types of pore states do coexist within the smallest nanocavities of a two-dimensional halogen-bonding multiporous network grown on Ag(111) studied using a combination of scanning tunneling microscopy and spectroscopy, density functional theory calculations, and electron plane wave expansion simulations. We find that superatom molecular orbitals undergo an important stabilization when hybridizing with the confined surface state, following the significant lowering of its free-standing energy. These findings provide further control over the surface electronic structure exerted by two-dimensional nanoporous systems.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c01200