Cell–cell contact landscapes in Xenopus gastrula tissues

Molecular and structural facets of cell–cell adhesion have been extensively studied in monolayered epithelia. Here, we perform a comprehensive analysis of cell–cell contacts in a series of multilayered tissues in the Xenopus gastrula model. We show that intercellular contact distances range from 10...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-09, Vol.118 (39), p.1-12
Hauptverfasser: Barua, Debanjan, Nagel, Martina, Winklbauer, Rudolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular and structural facets of cell–cell adhesion have been extensively studied in monolayered epithelia. Here, we perform a comprehensive analysis of cell–cell contacts in a series of multilayered tissues in the Xenopus gastrula model. We show that intercellular contact distances range from 10 to 1,000 nm. The contact width frequencies define tissue-specific contact spectra, and knockdown of adhesion factors modifies these spectra. This allows us to reconstruct the emergence of contact types from complex interactions of the factors. We find that the membrane proteoglycan Syndecan-4 plays a dominant role in all contacts, including narrow C-cadherin–mediated junctions. Glypican-4, hyaluronic acid, paraxial protocadherin, and fibronectin also control contact widths, and unexpectedly, C-cadherin functions in wide contacts. Using lanthanum staining, we identified three morphologically distinct forms of glycocalyx in contacts of the Xenopus gastrula, which are linked to the adhesion factors examined and mediate cell–cell attachment. Our study delineates a systematic approach to examine the varied contributions of adhesion factors individually or in combinations to nondiscrete and seemingly amorphous intercellular contacts.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.2107953118