The rice RNase P protein subunit Rpp30 confers broad‐spectrum resistance to fungal and bacterial pathogens

Summary RNase P functions either as a catalytic ribonucleoprotein (RNP) or as an RNA‐free polypeptide to catalyse RNA processing, primarily tRNA 5′ maturation. To the growing evidence of non‐canonical roles for RNase P RNP subunits including regulation of chromatin structure and function, we add her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2021-10, Vol.19 (10), p.1988-1999
Hauptverfasser: Li, Wei, Xiong, Yehui, Lai, Lien B., Zhang, Kai, Li, Zhiqiang, Kang, Houxiang, Dai, Liangying, Gopalan, Venkat, Wang, Guo‐Liang, Liu, Wende
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary RNase P functions either as a catalytic ribonucleoprotein (RNP) or as an RNA‐free polypeptide to catalyse RNA processing, primarily tRNA 5′ maturation. To the growing evidence of non‐canonical roles for RNase P RNP subunits including regulation of chromatin structure and function, we add here a role for the rice RNase P Rpp30 in innate immunity. This protein (encoded by LOC_Os11g01074) was uncovered as the top hit in yeast two‐hybrid assays performed with the rice histone deacetylase HDT701 as bait. We showed that HDT701 and OsRpp30 are localized to the rice nucleus, OsRpp30 expression increased post‐infection by Pyricularia oryzae (syn. Magnaporthe oryzae), and OsRpp30 deacetylation coincided with HDT701 overexpression in vivo. Overexpression of OsRpp30 in transgenic rice increased expression of defence genes and generation of reactive oxygen species after pathogen‐associated molecular pattern elicitor treatment, outcomes that culminated in resistance to a fungal (P. oryzae) and a bacterial (Xanthomonas oryzae pv. oryzae) pathogen. Knockout of OsRpp30 yielded the opposite phenotypes. Moreover, HA‐tagged OsRpp30 co‐purified with RNase P pre‐tRNA cleavage activity. Interestingly, OsRpp30 is conserved in grass crops, including a near‐identical C‐terminal tail that is essential for HDT701 binding and defence regulation. Overall, our results suggest that OsRpp30 plays an important role in rice immune response to pathogens and provides a new approach to generate broad‐spectrum disease‐resistant rice cultivars.
ISSN:1467-7644
1467-7652
DOI:10.1111/pbi.13612