Robustifying genomic classifiers to batch effects via ensemble learning
Abstract Motivation Genomic data are often produced in batches due to practical restrictions, which may lead to unwanted variation in data caused by discrepancies across batches. Such ‘batch effects’ often have negative impact on downstream biological analysis and need careful consideration. In prac...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2021-07, Vol.37 (11), p.1521-1527 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
Genomic data are often produced in batches due to practical restrictions, which may lead to unwanted variation in data caused by discrepancies across batches. Such ‘batch effects’ often have negative impact on downstream biological analysis and need careful consideration. In practice, batch effects are usually addressed by specifically designed software, which merge the data from different batches, then estimate batch effects and remove them from the data. Here, we focus on classification and prediction problems, and propose a different strategy based on ensemble learning. We first develop prediction models within each batch, then integrate them through ensemble weighting methods.
Results
We provide a systematic comparison between these two strategies using studies targeting diverse populations infected with tuberculosis. In one study, we simulated increasing levels of heterogeneity across random subsets of the study, which we treat as simulated batches. We then use the two methods to develop a genomic classifier for the binary indicator of disease status. We evaluate the accuracy of prediction in another independent study targeting a different population cohort. We observed that in independent validation, while merging followed by batch adjustment provides better discrimination at low level of heterogeneity, our ensemble learning strategy achieves more robust performance, especially at high severity of batch effects. These observations provide practical guidelines for handling batch effects in the development and evaluation of genomic classifiers.
Availability and implementation
The data underlying this article are available in the article and in its online supplementary material. Processed data is available in the Github repository with implementation code, at https://github.com/zhangyuqing/bea_ensemble.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1367-4811 |
DOI: | 10.1093/bioinformatics/btaa986 |