Identifying Receptors for Neuropeptides and Peptide Hormones: Challenges and Recent Progress

Intercellular signaling events mediated by neuropeptides and peptide hormones represent important targets for both basic science and drug discovery. For many bioactive peptides, the protein receptors that transmit information across the receiving cell membrane are not known, severely limiting these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2021-02, Vol.16 (2), p.251-263
Hauptverfasser: Abid, Md Shadman Ridwan, Mousavi, Somayeh, Checco, James W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intercellular signaling events mediated by neuropeptides and peptide hormones represent important targets for both basic science and drug discovery. For many bioactive peptides, the protein receptors that transmit information across the receiving cell membrane are not known, severely limiting these signaling pathways as potential therapeutic targets. Identifying the receptor(s) for a given peptide of interest is complicated by several factors. Most notably, cell–cell signaling peptides are generated through dynamic biosynthetic pathways, can act on many different families of receptor proteins, and can participate in complex ligand–receptor interactions that extend beyond a simple one-to-one archetype. Here, we discuss recent methodological advances to identify signaling partners for bioactive peptides. Recent efforts have centered on methods to identify candidate receptors via transcript expression, methods to match peptide–receptor pairs through high throughput screening, and methods to capture direct ligand–receptor interactions using chemical probes. Future applications of the receptor identification approaches discussed here, as well as technical advancements to address their limitations, promise to lead to a greater understanding of how cells communicate to deliver complex physiologies. Importantly, such advancements will likely provide novel targets for the treatment of human diseases within the central nervous and endocrine systems.
ISSN:1554-8929
1554-8937
DOI:10.1021/acschembio.0c00950