Illuminating Key Microbial Players and Metabolic Processes Involved in the Remineralization of Particulate Organic Carbon in the Ocean's Twilight Zone by Metaproteomics

The twilight zone (from the base of the euphotic zone to the depth of 1,000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2021-09, Vol.87 (20), p.e0098621-e0098621
Hauptverfasser: Kong, Ling-Fen, He, Yan-Bin, Xie, Zhang-Xian, Luo, Xing, Zhang, Hao, Yi, Sheng-Hui, Lin, Zhi-Long, Zhang, Shu-Feng, Yan, Ke-Qiang, Xu, Hong-Kai, Jin, Tao, Lin, Lin, Qin, Wei, Chen, Feng, Liu, Si-Qi, Wang, Da-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The twilight zone (from the base of the euphotic zone to the depth of 1,000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity directly associated with POC remineralization in this chronically understudied realm. Here, we characterized the microbial community proteomes of POC samples collected from the twilight zone of three contrasting sites in the Northwest Pacific Ocean using a metaproteomic approach. The particle-attached bacteria from , , and were the primary POC remineralizers. Hydrolytic enzymes, including proteases and hydrolases, that degrade proteinaceous components and polysaccharides, the main constituents of POC, were abundant and taxonomically associated with these bacterial groups. Furthermore, identification of diverse species-specific transporters and metabolic enzymes implied niche specialization for nutrient acquisition among these bacterial groups. Temperature was the main environmental factor driving the active bacterial groups and metabolic processes, and replaced as the predominant group under low temperature. This study provides insight into the key bacteria and metabolic processes involved in POC remineralization, and niche complementarity and species substitution among bacterial groups are critical for efficient POC remineralization in the twilight zone. The ocean's twilight zone is a critical zone where more than 70% of the sinking particulate organic carbon (POC) is remineralized. Therefore, the twilight zone determines the size of biological carbon storage in the ocean and regulates the global climate. Prokaryotes are major players that govern remineralization of POC in this region. However, knowledge of microbial community structure and metabolic activity is still lacking. This study unveiled microbial communities and metabolic activities of POC samples collected from the twilight zone of three contrasting environments in the Northwest Pacific Ocean using a metaproteomic approach. , , and were the major remineralizers of POC. They excreted diverse species-specific hydrolytic enzymes to split POC into solubilized POC or dissolved organic carbon. Temperature played a crucial role in regulating the community composition and metabolism. Furthermore, niche complementarity or species substitution among bacterial groups guaranteed t
ISSN:0099-2240
1098-5336
DOI:10.1128/AEM.00986-21