Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network

To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dento-maxillo-facial radiology 2021-10, Vol.50 (7), p.20210002-20210002
Hauptverfasser: Bispo, Mayara Simões, Pierre Júnior, Mário Lúcio Gomes de Queiroz, Apolinário, Jr, Antônio Lopes, Dos Santos, Jean Nunes, Junior, Braulio Carneiro, Neves, Frederico Sampaio, Crusoé-Rebello, Iêda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20210002
container_issue 7
container_start_page 20210002
container_title Dento-maxillo-facial radiology
container_volume 50
creator Bispo, Mayara Simões
Pierre Júnior, Mário Lúcio Gomes de Queiroz
Apolinário, Jr, Antônio Lopes
Dos Santos, Jean Nunes
Junior, Braulio Carneiro
Neves, Frederico Sampaio
Crusoé-Rebello, Iêda
description To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confirmed AM ( = 22) and OKC ( = 18) based on a conclusive histopathological report. The images ( = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method ( = 2) was used to estimate the accuracy of the CNN model. The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images. This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.
doi_str_mv 10.1259/dmfr.20210002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8474127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516842443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</originalsourceid><addsrcrecordid>eNpVkctu1TAQhi0EoofCki3ykk1KfEscFkjoiJtUiQ1I3VkTx05NE8_Bdor6Djw0PvQiWI1m5pt_ZvQT8pK1Z4yr4c20-nTGW87atuWPyI7JvmuU5BePya7lqm204Bcn5FnOPyohheqekhMhtOZcqR35vcf1sBWXaMEV5wSHy2DpFLx3ycUSYKkJzBFzyBQ9hdUtOC6QKw4U4kRxwlhwdrHOXbkEBe1NLm-prVAOPlgoASPdcogzBWoxXuOyHWtVO7ot_Q3lF6ar5-SJhyW7F3fxlHz_-OHb_nNz_vXTl_3788ZKJUqjOyHlZHvwox3GEbQUPWgrvdN-6DkbQIFmnXSd0B0bmRgVGwQfQApvJ-jFKXl3q3vYxtVNtj5arzCHFFZINwYhmP87MVyaGa-Nlr1k_Cjw-k4g4c_N5WLWkK1bFogOt2y4Yp2WXEpR0eYWtQlzTs4_rGGtOTpojg6aewcr_-rf2x7oe8vEH86PnZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516842443</pqid></control><display><type>article</type><title>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bispo, Mayara Simões ; Pierre Júnior, Mário Lúcio Gomes de Queiroz ; Apolinário, Jr, Antônio Lopes ; Dos Santos, Jean Nunes ; Junior, Braulio Carneiro ; Neves, Frederico Sampaio ; Crusoé-Rebello, Iêda</creator><creatorcontrib>Bispo, Mayara Simões ; Pierre Júnior, Mário Lúcio Gomes de Queiroz ; Apolinário, Jr, Antônio Lopes ; Dos Santos, Jean Nunes ; Junior, Braulio Carneiro ; Neves, Frederico Sampaio ; Crusoé-Rebello, Iêda</creatorcontrib><description>To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confirmed AM ( = 22) and OKC ( = 18) based on a conclusive histopathological report. The images ( = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method ( = 2) was used to estimate the accuracy of the CNN model. The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images. This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.</description><identifier>ISSN: 0250-832X</identifier><identifier>EISSN: 1476-542X</identifier><identifier>DOI: 10.1259/dmfr.20210002</identifier><identifier>PMID: 33882255</identifier><language>eng</language><publisher>England: The British Institute of Radiology</publisher><subject>Ameloblastoma - diagnostic imaging ; Computers ; Diagnosis, Differential ; Humans ; Jaw Neoplasms - diagnostic imaging ; Neural Networks, Computer ; Odontogenic Cysts - diagnostic imaging ; Tomography, X-Ray Computed</subject><ispartof>Dento-maxillo-facial radiology, 2021-10, Vol.50 (7), p.20210002-20210002</ispartof><rights>2021 The Authors. Published by the British Institute of Radiology 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</citedby><cites>FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33882255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bispo, Mayara Simões</creatorcontrib><creatorcontrib>Pierre Júnior, Mário Lúcio Gomes de Queiroz</creatorcontrib><creatorcontrib>Apolinário, Jr, Antônio Lopes</creatorcontrib><creatorcontrib>Dos Santos, Jean Nunes</creatorcontrib><creatorcontrib>Junior, Braulio Carneiro</creatorcontrib><creatorcontrib>Neves, Frederico Sampaio</creatorcontrib><creatorcontrib>Crusoé-Rebello, Iêda</creatorcontrib><title>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</title><title>Dento-maxillo-facial radiology</title><addtitle>Dentomaxillofac Radiol</addtitle><description>To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confirmed AM ( = 22) and OKC ( = 18) based on a conclusive histopathological report. The images ( = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method ( = 2) was used to estimate the accuracy of the CNN model. The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images. This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.</description><subject>Ameloblastoma - diagnostic imaging</subject><subject>Computers</subject><subject>Diagnosis, Differential</subject><subject>Humans</subject><subject>Jaw Neoplasms - diagnostic imaging</subject><subject>Neural Networks, Computer</subject><subject>Odontogenic Cysts - diagnostic imaging</subject><subject>Tomography, X-Ray Computed</subject><issn>0250-832X</issn><issn>1476-542X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctu1TAQhi0EoofCki3ykk1KfEscFkjoiJtUiQ1I3VkTx05NE8_Bdor6Djw0PvQiWI1m5pt_ZvQT8pK1Z4yr4c20-nTGW87atuWPyI7JvmuU5BePya7lqm204Bcn5FnOPyohheqekhMhtOZcqR35vcf1sBWXaMEV5wSHy2DpFLx3ycUSYKkJzBFzyBQ9hdUtOC6QKw4U4kRxwlhwdrHOXbkEBe1NLm-prVAOPlgoASPdcogzBWoxXuOyHWtVO7ot_Q3lF6ar5-SJhyW7F3fxlHz_-OHb_nNz_vXTl_3788ZKJUqjOyHlZHvwox3GEbQUPWgrvdN-6DkbQIFmnXSd0B0bmRgVGwQfQApvJ-jFKXl3q3vYxtVNtj5arzCHFFZINwYhmP87MVyaGa-Nlr1k_Cjw-k4g4c_N5WLWkK1bFogOt2y4Yp2WXEpR0eYWtQlzTs4_rGGtOTpojg6aewcr_-rf2x7oe8vEH86PnZ0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bispo, Mayara Simões</creator><creator>Pierre Júnior, Mário Lúcio Gomes de Queiroz</creator><creator>Apolinário, Jr, Antônio Lopes</creator><creator>Dos Santos, Jean Nunes</creator><creator>Junior, Braulio Carneiro</creator><creator>Neves, Frederico Sampaio</creator><creator>Crusoé-Rebello, Iêda</creator><general>The British Institute of Radiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211001</creationdate><title>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</title><author>Bispo, Mayara Simões ; Pierre Júnior, Mário Lúcio Gomes de Queiroz ; Apolinário, Jr, Antônio Lopes ; Dos Santos, Jean Nunes ; Junior, Braulio Carneiro ; Neves, Frederico Sampaio ; Crusoé-Rebello, Iêda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ameloblastoma - diagnostic imaging</topic><topic>Computers</topic><topic>Diagnosis, Differential</topic><topic>Humans</topic><topic>Jaw Neoplasms - diagnostic imaging</topic><topic>Neural Networks, Computer</topic><topic>Odontogenic Cysts - diagnostic imaging</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bispo, Mayara Simões</creatorcontrib><creatorcontrib>Pierre Júnior, Mário Lúcio Gomes de Queiroz</creatorcontrib><creatorcontrib>Apolinário, Jr, Antônio Lopes</creatorcontrib><creatorcontrib>Dos Santos, Jean Nunes</creatorcontrib><creatorcontrib>Junior, Braulio Carneiro</creatorcontrib><creatorcontrib>Neves, Frederico Sampaio</creatorcontrib><creatorcontrib>Crusoé-Rebello, Iêda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Dento-maxillo-facial radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bispo, Mayara Simões</au><au>Pierre Júnior, Mário Lúcio Gomes de Queiroz</au><au>Apolinário, Jr, Antônio Lopes</au><au>Dos Santos, Jean Nunes</au><au>Junior, Braulio Carneiro</au><au>Neves, Frederico Sampaio</au><au>Crusoé-Rebello, Iêda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</atitle><jtitle>Dento-maxillo-facial radiology</jtitle><addtitle>Dentomaxillofac Radiol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>50</volume><issue>7</issue><spage>20210002</spage><epage>20210002</epage><pages>20210002-20210002</pages><issn>0250-832X</issn><eissn>1476-542X</eissn><abstract>To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confirmed AM ( = 22) and OKC ( = 18) based on a conclusive histopathological report. The images ( = 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method ( = 2) was used to estimate the accuracy of the CNN model. The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images. This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.</abstract><cop>England</cop><pub>The British Institute of Radiology</pub><pmid>33882255</pmid><doi>10.1259/dmfr.20210002</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0250-832X
ispartof Dento-maxillo-facial radiology, 2021-10, Vol.50 (7), p.20210002-20210002
issn 0250-832X
1476-542X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8474127
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current)
subjects Ameloblastoma - diagnostic imaging
Computers
Diagnosis, Differential
Humans
Jaw Neoplasms - diagnostic imaging
Neural Networks, Computer
Odontogenic Cysts - diagnostic imaging
Tomography, X-Ray Computed
title Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20tomographic%20differential%20diagnosis%20of%20ameloblastoma%20and%20odontogenic%20keratocyst:%20classification%20using%20a%20convolutional%20neural%20network&rft.jtitle=Dento-maxillo-facial%20radiology&rft.au=Bispo,%20Mayara%20Sim%C3%B5es&rft.date=2021-10-01&rft.volume=50&rft.issue=7&rft.spage=20210002&rft.epage=20210002&rft.pages=20210002-20210002&rft.issn=0250-832X&rft.eissn=1476-542X&rft_id=info:doi/10.1259/dmfr.20210002&rft_dat=%3Cproquest_pubme%3E2516842443%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516842443&rft_id=info:pmid/33882255&rfr_iscdi=true