Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network
To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confir...
Gespeichert in:
Veröffentlicht in: | Dento-maxillo-facial radiology 2021-10, Vol.50 (7), p.20210002-20210002 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20210002 |
---|---|
container_issue | 7 |
container_start_page | 20210002 |
container_title | Dento-maxillo-facial radiology |
container_volume | 50 |
creator | Bispo, Mayara Simões Pierre Júnior, Mário Lúcio Gomes de Queiroz Apolinário, Jr, Antônio Lopes Dos Santos, Jean Nunes Junior, Braulio Carneiro Neves, Frederico Sampaio Crusoé-Rebello, Iêda |
description | To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs).
For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (
= 22) and OKC (
= 18) based on a conclusive histopathological report. The images (
= 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (
= 2) was used to estimate the accuracy of the CNN model.
The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images.
This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate. |
doi_str_mv | 10.1259/dmfr.20210002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8474127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516842443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</originalsourceid><addsrcrecordid>eNpVkctu1TAQhi0EoofCki3ykk1KfEscFkjoiJtUiQ1I3VkTx05NE8_Bdor6Djw0PvQiWI1m5pt_ZvQT8pK1Z4yr4c20-nTGW87atuWPyI7JvmuU5BePya7lqm204Bcn5FnOPyohheqekhMhtOZcqR35vcf1sBWXaMEV5wSHy2DpFLx3ycUSYKkJzBFzyBQ9hdUtOC6QKw4U4kRxwlhwdrHOXbkEBe1NLm-prVAOPlgoASPdcogzBWoxXuOyHWtVO7ot_Q3lF6ar5-SJhyW7F3fxlHz_-OHb_nNz_vXTl_3788ZKJUqjOyHlZHvwox3GEbQUPWgrvdN-6DkbQIFmnXSd0B0bmRgVGwQfQApvJ-jFKXl3q3vYxtVNtj5arzCHFFZINwYhmP87MVyaGa-Nlr1k_Cjw-k4g4c_N5WLWkK1bFogOt2y4Yp2WXEpR0eYWtQlzTs4_rGGtOTpojg6aewcr_-rf2x7oe8vEH86PnZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516842443</pqid></control><display><type>article</type><title>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bispo, Mayara Simões ; Pierre Júnior, Mário Lúcio Gomes de Queiroz ; Apolinário, Jr, Antônio Lopes ; Dos Santos, Jean Nunes ; Junior, Braulio Carneiro ; Neves, Frederico Sampaio ; Crusoé-Rebello, Iêda</creator><creatorcontrib>Bispo, Mayara Simões ; Pierre Júnior, Mário Lúcio Gomes de Queiroz ; Apolinário, Jr, Antônio Lopes ; Dos Santos, Jean Nunes ; Junior, Braulio Carneiro ; Neves, Frederico Sampaio ; Crusoé-Rebello, Iêda</creatorcontrib><description>To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs).
For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (
= 22) and OKC (
= 18) based on a conclusive histopathological report. The images (
= 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (
= 2) was used to estimate the accuracy of the CNN model.
The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images.
This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.</description><identifier>ISSN: 0250-832X</identifier><identifier>EISSN: 1476-542X</identifier><identifier>DOI: 10.1259/dmfr.20210002</identifier><identifier>PMID: 33882255</identifier><language>eng</language><publisher>England: The British Institute of Radiology</publisher><subject>Ameloblastoma - diagnostic imaging ; Computers ; Diagnosis, Differential ; Humans ; Jaw Neoplasms - diagnostic imaging ; Neural Networks, Computer ; Odontogenic Cysts - diagnostic imaging ; Tomography, X-Ray Computed</subject><ispartof>Dento-maxillo-facial radiology, 2021-10, Vol.50 (7), p.20210002-20210002</ispartof><rights>2021 The Authors. Published by the British Institute of Radiology 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</citedby><cites>FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33882255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bispo, Mayara Simões</creatorcontrib><creatorcontrib>Pierre Júnior, Mário Lúcio Gomes de Queiroz</creatorcontrib><creatorcontrib>Apolinário, Jr, Antônio Lopes</creatorcontrib><creatorcontrib>Dos Santos, Jean Nunes</creatorcontrib><creatorcontrib>Junior, Braulio Carneiro</creatorcontrib><creatorcontrib>Neves, Frederico Sampaio</creatorcontrib><creatorcontrib>Crusoé-Rebello, Iêda</creatorcontrib><title>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</title><title>Dento-maxillo-facial radiology</title><addtitle>Dentomaxillofac Radiol</addtitle><description>To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs).
For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (
= 22) and OKC (
= 18) based on a conclusive histopathological report. The images (
= 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (
= 2) was used to estimate the accuracy of the CNN model.
The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images.
This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.</description><subject>Ameloblastoma - diagnostic imaging</subject><subject>Computers</subject><subject>Diagnosis, Differential</subject><subject>Humans</subject><subject>Jaw Neoplasms - diagnostic imaging</subject><subject>Neural Networks, Computer</subject><subject>Odontogenic Cysts - diagnostic imaging</subject><subject>Tomography, X-Ray Computed</subject><issn>0250-832X</issn><issn>1476-542X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctu1TAQhi0EoofCki3ykk1KfEscFkjoiJtUiQ1I3VkTx05NE8_Bdor6Djw0PvQiWI1m5pt_ZvQT8pK1Z4yr4c20-nTGW87atuWPyI7JvmuU5BePya7lqm204Bcn5FnOPyohheqekhMhtOZcqR35vcf1sBWXaMEV5wSHy2DpFLx3ycUSYKkJzBFzyBQ9hdUtOC6QKw4U4kRxwlhwdrHOXbkEBe1NLm-prVAOPlgoASPdcogzBWoxXuOyHWtVO7ot_Q3lF6ar5-SJhyW7F3fxlHz_-OHb_nNz_vXTl_3788ZKJUqjOyHlZHvwox3GEbQUPWgrvdN-6DkbQIFmnXSd0B0bmRgVGwQfQApvJ-jFKXl3q3vYxtVNtj5arzCHFFZINwYhmP87MVyaGa-Nlr1k_Cjw-k4g4c_N5WLWkK1bFogOt2y4Yp2WXEpR0eYWtQlzTs4_rGGtOTpojg6aewcr_-rf2x7oe8vEH86PnZ0</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Bispo, Mayara Simões</creator><creator>Pierre Júnior, Mário Lúcio Gomes de Queiroz</creator><creator>Apolinário, Jr, Antônio Lopes</creator><creator>Dos Santos, Jean Nunes</creator><creator>Junior, Braulio Carneiro</creator><creator>Neves, Frederico Sampaio</creator><creator>Crusoé-Rebello, Iêda</creator><general>The British Institute of Radiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20211001</creationdate><title>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</title><author>Bispo, Mayara Simões ; Pierre Júnior, Mário Lúcio Gomes de Queiroz ; Apolinário, Jr, Antônio Lopes ; Dos Santos, Jean Nunes ; Junior, Braulio Carneiro ; Neves, Frederico Sampaio ; Crusoé-Rebello, Iêda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-86344dc7afbc9bba8437a8c4fe8f97219a5a8164e63861b13b519329a43fcda73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ameloblastoma - diagnostic imaging</topic><topic>Computers</topic><topic>Diagnosis, Differential</topic><topic>Humans</topic><topic>Jaw Neoplasms - diagnostic imaging</topic><topic>Neural Networks, Computer</topic><topic>Odontogenic Cysts - diagnostic imaging</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bispo, Mayara Simões</creatorcontrib><creatorcontrib>Pierre Júnior, Mário Lúcio Gomes de Queiroz</creatorcontrib><creatorcontrib>Apolinário, Jr, Antônio Lopes</creatorcontrib><creatorcontrib>Dos Santos, Jean Nunes</creatorcontrib><creatorcontrib>Junior, Braulio Carneiro</creatorcontrib><creatorcontrib>Neves, Frederico Sampaio</creatorcontrib><creatorcontrib>Crusoé-Rebello, Iêda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Dento-maxillo-facial radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bispo, Mayara Simões</au><au>Pierre Júnior, Mário Lúcio Gomes de Queiroz</au><au>Apolinário, Jr, Antônio Lopes</au><au>Dos Santos, Jean Nunes</au><au>Junior, Braulio Carneiro</au><au>Neves, Frederico Sampaio</au><au>Crusoé-Rebello, Iêda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network</atitle><jtitle>Dento-maxillo-facial radiology</jtitle><addtitle>Dentomaxillofac Radiol</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>50</volume><issue>7</issue><spage>20210002</spage><epage>20210002</epage><pages>20210002-20210002</pages><issn>0250-832X</issn><eissn>1476-542X</eissn><abstract>To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs).
For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (
= 22) and OKC (
= 18) based on a conclusive histopathological report. The images (
= 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (
= 2) was used to estimate the accuracy of the CNN model.
The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images.
This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate.</abstract><cop>England</cop><pub>The British Institute of Radiology</pub><pmid>33882255</pmid><doi>10.1259/dmfr.20210002</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-832X |
ispartof | Dento-maxillo-facial radiology, 2021-10, Vol.50 (7), p.20210002-20210002 |
issn | 0250-832X 1476-542X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8474127 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current) |
subjects | Ameloblastoma - diagnostic imaging Computers Diagnosis, Differential Humans Jaw Neoplasms - diagnostic imaging Neural Networks, Computer Odontogenic Cysts - diagnostic imaging Tomography, X-Ray Computed |
title | Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20tomographic%20differential%20diagnosis%20of%20ameloblastoma%20and%20odontogenic%20keratocyst:%20classification%20using%20a%20convolutional%20neural%20network&rft.jtitle=Dento-maxillo-facial%20radiology&rft.au=Bispo,%20Mayara%20Sim%C3%B5es&rft.date=2021-10-01&rft.volume=50&rft.issue=7&rft.spage=20210002&rft.epage=20210002&rft.pages=20210002-20210002&rft.issn=0250-832X&rft.eissn=1476-542X&rft_id=info:doi/10.1259/dmfr.20210002&rft_dat=%3Cproquest_pubme%3E2516842443%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516842443&rft_id=info:pmid/33882255&rfr_iscdi=true |