Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network
To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs). For construction of the database, we selected axial multidetector CT images from patients with confir...
Gespeichert in:
Veröffentlicht in: | Dento-maxillo-facial radiology 2021-10, Vol.50 (7), p.20210002-20210002 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To analyse the automatic classification performance of a convolutional neural network (CNN), Google Inception v3, using tomographic images of odontogenic keratocysts (OKCs) and ameloblastomas (AMs).
For construction of the database, we selected axial multidetector CT images from patients with confirmed AM (
= 22) and OKC (
= 18) based on a conclusive histopathological report. The images (
= 350) were segmented manually and data augmentation algorithms were applied, totalling 2500 images. The k-fold × five cross-validation method (
= 2) was used to estimate the accuracy of the CNN model.
The accuracy and standard deviation (%) of cross-validation for the five iterations performed were 90.16 ± 0.95, 91.37 ± 0.57, 91.62 ± 0.19, 92.48 ± 0.16 and 91.21 ± 0.87, respectively. A higher error rate was observed for the classification of AM images.
This study demonstrated a high classification accuracy of Google Inception v3 for tomographic images of OKCs and AMs. However, AMs images presented the higher error rate. |
---|---|
ISSN: | 0250-832X 1476-542X |
DOI: | 10.1259/dmfr.20210002 |