Effective Removal of Cr(VI) from Wastewater Using Biochar Derived from Walnut Shell

Heavy metals are the major concern of the modern age. Among the heavy metals, chromium (Cr(VI)) is regarded as a highly toxic heavy metal released largely from leather tanning operations. To remove such high concentrations of Cr(VI), an advanced method is required urgently. Thus, biosorption using b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2021-09, Vol.18 (18), p.9670
Hauptverfasser: Kokab, Tanzeela, Ashraf, Hafiza Sumbal, Shakoor, Muhammad Bilal, Jilani, Asim, Ahmad, Sajid Rashid, Majid, Muzaffar, Ali, Shafaqat, Farid, Nazar, Alghamdi, Rana A., Al-Quwaie, Diana A. H., Hakeem, Khalid Rehman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy metals are the major concern of the modern age. Among the heavy metals, chromium (Cr(VI)) is regarded as a highly toxic heavy metal released largely from leather tanning operations. To remove such high concentrations of Cr(VI), an advanced method is required urgently. Thus, biosorption using biochar, which is an organic material produced from various sources such as walnut shell, can be applied successfully for Cr(VI) abatement. The major objectives of this experiment were the remediation of the Cr(VI) heavy metal using walnut shell biochar and checking of the effect of pH, biochar dosage, Cr level, and shaking time. Remediation of Cr(VI) using walnut shell biochar was proved to be effective and removed the maximum concentration of Cr(VI) up to 93% at pH 5.5, 2 h agitation time, and the biochar amount of 1.1 g L−1 from an aqueous solution. Equilibrium modeling demonstrated that the chemisorption process was involved in adsorption of Cr(VI). The surface of the biochar was porous and provided numerous sites for Cr(VI) attachment, which was also confirmed by the presence of Cr(VI) onto the biochar after adsorption. Hence, the use of walnut shell biochar was highly effective as a sorbent, which could conveniently be applied to small-scale as well as large-scale levels.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph18189670