Texture Evolution and Nanohardness in Cu-Nb Composite Wires

Multifilamentary microcomposite copper-niobium (Cu-Nb) wires were fabricated by a series of accumulative drawing and bonding steps (ADB). The texture of the Cu matrix in these wires was studied using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). Dynamic recrys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-09, Vol.14 (18), p.5294
Hauptverfasser: Xiang, Shihua, Yang, Xiaofang, Liang, Yanxiang, Wang, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multifilamentary microcomposite copper-niobium (Cu-Nb) wires were fabricated by a series of accumulative drawing and bonding steps (ADB). The texture of the Cu matrix in these wires was studied using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). Dynamic recrystallization during cold drawing caused a weakening of the texture in the micron-scale Cu matrix at high values of true strain. A sharp texture was observed in the nano-scale Cu matrix due to the suppression of dynamic recrystallization. The grain size was reduced by the higher level of dynamic recrystallization at high strains. The relation between the nanoindentation behavior of the different Cu matrix and the grain sizes, Cu-Nb interface, and texture was established.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14185294