Naringenin Sensitizes Resistant C6 Glioma Cells with a Repressive Impact on the Migrating Ability

Background: Glioma, the most common form of a malignant brain tumour is characterised by a poor prognosis, which is attributable to its resistance against current therapeutic approaches. Temozolomide (TMZ), a DNA alkylating agent, is the first-line drug for glioma treatment. Long-term treatment usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of Neurosciences 2020-07, Vol.27 (3-4), p.114-123
Hauptverfasser: J, Jayalakshmi, Vanisree, Arambakkam Janardhanam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Glioma, the most common form of a malignant brain tumour is characterised by a poor prognosis, which is attributable to its resistance against current therapeutic approaches. Temozolomide (TMZ), a DNA alkylating agent, is the first-line drug for glioma treatment. Long-term treatment using TMZ was reported to culminate in the development of resistance with overexpression of multidrug resistance 1 gene coded protein P-glycoprotein, which in turn releases the drugs from the tumour cells. Purpose: Thus, to circumvent such resistance issues, the current study attempted to explore the effect of naringenin (a flavanone) with proven antiglial tumour potential, in mitigating the features of TMZ resistance. Methods: Colony-forming assay, invasion assay and scratch wound assay were performed among the groups, namely tumour control (C6), vehicle control (V), naringenin (NGEN)-treated, drug-resistant tumour cells (C6R), and drug resistance cells added with NGEN (C6R+NGEN), to examine the impact of NGEN on migration and invasion. The effect of NGEN on filopodia length and density during cell migration was also studied in addition to the matrix metalloproteinases (MMP-2 and MMP-9) and p-ERK levels. Results and Conclusion: NGEN and C6R+NGEN groups had shown significant reduction (P < .01) in length and density of filopodia, colony formation, invasion and wound healing. Further, NGEN could also modify the assessed protein levels (P < .001), which were involved in migration and invasion in sensitive and resistant cells. Our study had provided the first evidence on NGEN-induced enhanced sensitivity against TMZ resistance with profound influence as an antimigratory and anti-invasive agent.
ISSN:0972-7531
0976-3260
DOI:10.1177/0972753120950057