Molecular modelling studies unveil potential binding sites on human serum albumin for selected experimental and in silico COVID-19 drug candidate molecules

Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmaco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Saudi journal of biological sciences 2022-01, Vol.29 (1), p.53-64
Hauptverfasser: Gurung, Arun Bahadur, Ali, Mohammad Ajmal, Lee, Joongku, Farah, Mohammad Abul, Al-Anazi, Khalid Mashay, Sami, Hiba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmacological effects. This study aims to investigate the molecular binding of coronavirus disease 2019 (COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites. Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug candidate molecules (β-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak binding to HSA, with binding energies ranging from −5 to −6.7 kcal/mol. Ivermectin, Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies ranging from −6.9 to −9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir, Paritaprevir etc.) with binding energies ranging from −9.7 to −12.1 kcal/mol. All these molecules bind to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption, blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each molecule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The binding free energy between free HSA and compounds were calculated using Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) approach.The findings of this study might be useful in understanding the mechanism of COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and pharmacokinetics.
ISSN:1319-562X
2213-7106
DOI:10.1016/j.sjbs.2021.09.042