Deciphering CAD: Structure and function of a mega‐enzymatic pyrimidine factory in health and disease

CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein divided into different enzymatic domains, each catalyzing one of the initial reactions for de novo biosynthesis of pyrimidine nucleotides: glutaminase‐dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2021-10, Vol.30 (10), p.1995-2008
Hauptverfasser: Caño‐Ochoa, Francisco, Ramón‐Maiques, Santiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein divided into different enzymatic domains, each catalyzing one of the initial reactions for de novo biosynthesis of pyrimidine nucleotides: glutaminase‐dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase. The pathway for de novo pyrimidine synthesis is essential for cell proliferation and is conserved in all living organisms, but the covalent linkage of the first enzymatic activities into a multienzymatic CAD particle is unique to animals. In other organisms, these enzymatic activities are encoded as monofunctional proteins for which there is abundant structural and biochemical information. However, the knowledge about CAD is scarce and fragmented. Understanding CAD requires not only to determine the three‐dimensional structures and define the catalytic and regulatory mechanisms of the different enzymatic domains, but also to comprehend how these domains entangle and work in a coordinated and regulated manner. This review summarizes significant progress over the past 10 years toward the characterization of CAD's architecture, function, regulatory mechanisms, and cellular compartmentalization, as well as the recent finding of a new and rare neurometabolic disorder caused by defects in CAD activities.
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.4158