Mathematical analysis and topology of SARS-CoV-2, bonding with cells and unbonding
We consider the structure of the novel coronavirus (SARS-Cov-2) in terms of the number of spikes that are critical in bonding with the cells in the host. Bonding formation is considered for selection criteria with and without any treatments. Functional mappings from the discrete space of spikes and...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-10, Vol.514 (2), p.125664-125664, Article 125664 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the structure of the novel coronavirus (SARS-Cov-2) in terms of the number of spikes that are critical in bonding with the cells in the host. Bonding formation is considered for selection criteria with and without any treatments. Functional mappings from the discrete space of spikes and cells and their analysis are performed. We found that careful mathematical constructions help in understanding the treatment impacts, and the role of vaccines within a host. Smale's famous 2-D horseshoe examples inspired us to create 3-D visualizations and understand the topological diffusion of spikes from one human organ to another organ. The pharma industry will benefit from such an analysis for designing efficient treatment and vaccine strategies. |
---|---|
ISSN: | 0022-247X 1096-0813 0022-247X |
DOI: | 10.1016/j.jmaa.2021.125664 |