Research on Data Analysis of Traditional Chinese Medicine with Improved Differential Evolution Clustering Algorithm

Medical data analysis is an important part of intelligent medicine, and clustering analysis is a commonly used method for data analysis of Traditional Chinese Medicine (TCM); however, the classical K-Means algorithm is greatly affected by the selection of initial clustering center, which is easy to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of healthcare engineering 2021, Vol.2021, p.4468741-10
Hauptverfasser: Zhu, Honglei, Zhao, Yingying, Wang, Xueyun, Xu, Yulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical data analysis is an important part of intelligent medicine, and clustering analysis is a commonly used method for data analysis of Traditional Chinese Medicine (TCM); however, the classical K-Means algorithm is greatly affected by the selection of initial clustering center, which is easy to fall into the local optimal solution. To avoid this problem, an improved differential evolution clustering algorithm is proposed in this paper. The proposed algorithm selects the initial clustering center randomly, optimizes and locates the clustering center in the process of evolution iteration, and improves the mutation mode of differential evolution to enhance the overall optimization ability, so that the clustering effect can reach the global optimization as far as possible. Three University of California, Irvine (UCI), data sets are selected to compare the clustering effect of the classical K-Means algorithm, the standard DE-K-Means algorithm, the K-Means++ algorithm, and the proposed algorithm. The experimental results show that, in terms of global optimization, the proposed algorithm is obviously superior to the other three algorithms, and in terms of convergence speed, the proposed algorithm is better than DE-K-Means algorithm. Finally, the proposed algorithm is applied to analyze the drug data of Traditional Chinese Medicine in the treatment of pulmonary diseases, and the analysis results are consistent with the theory of Traditional Chinese Medicine.
ISSN:2040-2295
2040-2309
DOI:10.1155/2021/4468741