Overcoming the Pregnane X Receptor Liability: Rational Design to Eliminate PXR-Mediated CYP Induction
The pregnane X receptor (PXR) regulates expression of proteins responsible for all three phases required for the detoxification mechanism, which include CYP450 enzymes, phase II enzymes, and multidrug efflux pumps. Therefore, PXR is a prominent receptor that is responsible for xenobiotic excretion a...
Gespeichert in:
Veröffentlicht in: | ACS medicinal chemistry letters 2021-09, Vol.12 (9), p.1396-1404 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pregnane X receptor (PXR) regulates expression of proteins responsible for all three phases required for the detoxification mechanism, which include CYP450 enzymes, phase II enzymes, and multidrug efflux pumps. Therefore, PXR is a prominent receptor that is responsible for xenobiotic excretion and drug–drug interactions. Pyrimidinone 1 is an antagonist of the calcium sensing receptor (CaSR) and a strong activator of PXR. Repeat oral administration revealed diminished exposures over time, which prohibited further progression. A medicinal chemistry campaign was initiated to understand and abolish activation of PXR in order to increase systemic exposures. Rational structure–activity relationship investigations utilizing cocrystal structures and a de novo pharmacophore model resulted in compounds devoid of PXR activation. These studies culminated in the first orally active CaSR antagonist 8 suitable for progression. Cocrystallography, the pharmacophore model employed, and additional observations reported herein supported rational elimination of PXR activation and have applicability across diverse chemical classes to help erase PXR-driven drug–drug interactions. |
---|---|
ISSN: | 1948-5875 1948-5875 |
DOI: | 10.1021/acsmedchemlett.1c00187 |