Artesunate relieves acute kidney injury through inhibiting macrophagic Mincle‐mediated necroptosis and inflammation to tubular epithelial cell

Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti‐inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2021-09, Vol.25 (18), p.8775-8788
Hauptverfasser: Lei, Xian‐ying, Tan, Rui‐zhi, Jia, Jian, Wu, Song‐lin, Wen, Cheng‐li, Lin, Xiao, Wang, Huan, Shi, Zhang‐jing, Li, Bo, Kang, Yan, Wang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artesunate is a widely used derivative of artemisinin for malaria. Recent researches have shown that artesunate has a significant anti‐inflammatory effect on many diseases. However, its effect on acute kidney injury with a significant inflammatory response is not clear. In this study, we established a cisplatin‐induced AKI mouse model and a co‐culture system of BMDM and tubular epithelial cells (mTEC) to verify the renoprotective and anti‐inflammatory effects of artesunate on AKI, and explored the underlying mechanism. We found that artesunate strongly down‐regulated the serum creatinine and BUN levels in AKI mice, reduced the necroptosis of tubular cells and down‐regulated the expression of the tubular injury molecule Tim‐1. On the other hand, artesunate strongly inhibited the mRNA expression of inflammatory cytokines (IL‐1β, IL‐6 and TNF‐α), protein levels of inflammatory signals (iNOS and NF‐κB) and necroptosis signals (RIPK1, RIPK3 and MLKL) in kidney of AKI mouse. Notably, the co‐culture system proved that Mincle in macrophage can aggravate the inflammation and necroptosis of mTEC induced by LPS, and artesunate suppressed the expression of Mincle in macrophage of kidney in AKI mouse. Overexpression of Mincle in BMDM restored the damage and necroptosis inhibited by artesunate in mTEC, indicating Mincle in macrophage is the target of artesunate to protect tubule cells in AKI. Our findings demonstrated that artesunate can significantly improve renal function in AKI, which may be related to the inhibition of Mincle‐mediated macrophage inflammation, thereby reducing the damage and necroptosis to tubular cells that provide new option for the treatment of AKI.
ISSN:1582-1838
1582-4934
DOI:10.1111/jcmm.16833