Direct observation and manipulation of hot electrons at room temperature
Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the ma...
Gespeichert in:
Veröffentlicht in: | National science review 2021-09, Vol.8 (9), p.nwaa295-nwaa295 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | nwaa295 |
---|---|
container_issue | 9 |
container_start_page | nwaa295 |
container_title | National science review |
container_volume | 8 |
creator | Wang, Hailu Wang, Fang Xia, Hui Wang, Peng Li, Tianxin Li, Juzhu Wang, Zhen Sun, Jiamin Wu, Peisong Ye, Jiafu Zhuang, Qiandong Yang, Zaixing Fu, Lan Hu, Weida Chen, Xiaoshuang Lu, Wei |
description | Abstract
In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.
A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications. |
doi_str_mv | 10.1093/nsr/nwaa295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nsr/nwaa295</oup_id><sourcerecordid>2585922640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMo7qJ78gvkJILUTZqkbS6CrH9WWPCi4C1M09QttElN0hW_vV26CF5kDvOY-fEePIQuKLmhRLKlDX5pvwBSKY7QPCWCJTnl78d7LUUiKCtmaBFCU5JRZ3nO6SmaMZ5JmjMyR-v7xhsdsSuD8TuIjbMYbIU7sE0_tNPB1XjrIjbtSHpnA4aIvXMdjqbrjYc4eHOOTmpog1kc9hl6e3x4Xa2TzcvT8-puk2hWyJhkpCbAKiBpwTMKmhAps1rQUuiy4nnOjCBcFFwaELzgYpyaGqI1T3XFaMXO0O3k2w9lZyptbPTQqt43Hfhv5aBRfz-22aoPt1MFZ4xIPhpcHQy8-xxMiKprgjZtC9a4IahUFEKmacbJiF5PqPYuBG_q3xhK1L5-NdavDvWP9OVEu6H_F_wBi7yGkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585922640</pqid></control><display><type>article</type><title>Direct observation and manipulation of hot electrons at room temperature</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Hailu ; Wang, Fang ; Xia, Hui ; Wang, Peng ; Li, Tianxin ; Li, Juzhu ; Wang, Zhen ; Sun, Jiamin ; Wu, Peisong ; Ye, Jiafu ; Zhuang, Qiandong ; Yang, Zaixing ; Fu, Lan ; Hu, Weida ; Chen, Xiaoshuang ; Lu, Wei</creator><creatorcontrib>Wang, Hailu ; Wang, Fang ; Xia, Hui ; Wang, Peng ; Li, Tianxin ; Li, Juzhu ; Wang, Zhen ; Sun, Jiamin ; Wu, Peisong ; Ye, Jiafu ; Zhuang, Qiandong ; Yang, Zaixing ; Fu, Lan ; Hu, Weida ; Chen, Xiaoshuang ; Lu, Wei</creatorcontrib><description>Abstract
In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.
A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.</description><identifier>ISSN: 2095-5138</identifier><identifier>EISSN: 2053-714X</identifier><identifier>DOI: 10.1093/nsr/nwaa295</identifier><identifier>PMID: 34691730</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Physics</subject><ispartof>National science review, 2021-09, Vol.8 (9), p.nwaa295-nwaa295</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</citedby><cites>FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433094/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433094/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Wang, Hailu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Tianxin</creatorcontrib><creatorcontrib>Li, Juzhu</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jiamin</creatorcontrib><creatorcontrib>Wu, Peisong</creatorcontrib><creatorcontrib>Ye, Jiafu</creatorcontrib><creatorcontrib>Zhuang, Qiandong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Fu, Lan</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Chen, Xiaoshuang</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Direct observation and manipulation of hot electrons at room temperature</title><title>National science review</title><description>Abstract
In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.
A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.</description><subject>Physics</subject><issn>2095-5138</issn><issn>2053-714X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE9LxDAQxYMo7qJ78gvkJILUTZqkbS6CrH9WWPCi4C1M09QttElN0hW_vV26CF5kDvOY-fEePIQuKLmhRLKlDX5pvwBSKY7QPCWCJTnl78d7LUUiKCtmaBFCU5JRZ3nO6SmaMZ5JmjMyR-v7xhsdsSuD8TuIjbMYbIU7sE0_tNPB1XjrIjbtSHpnA4aIvXMdjqbrjYc4eHOOTmpog1kc9hl6e3x4Xa2TzcvT8-puk2hWyJhkpCbAKiBpwTMKmhAps1rQUuiy4nnOjCBcFFwaELzgYpyaGqI1T3XFaMXO0O3k2w9lZyptbPTQqt43Hfhv5aBRfz-22aoPt1MFZ4xIPhpcHQy8-xxMiKprgjZtC9a4IahUFEKmacbJiF5PqPYuBG_q3xhK1L5-NdavDvWP9OVEu6H_F_wBi7yGkw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wang, Hailu</creator><creator>Wang, Fang</creator><creator>Xia, Hui</creator><creator>Wang, Peng</creator><creator>Li, Tianxin</creator><creator>Li, Juzhu</creator><creator>Wang, Zhen</creator><creator>Sun, Jiamin</creator><creator>Wu, Peisong</creator><creator>Ye, Jiafu</creator><creator>Zhuang, Qiandong</creator><creator>Yang, Zaixing</creator><creator>Fu, Lan</creator><creator>Hu, Weida</creator><creator>Chen, Xiaoshuang</creator><creator>Lu, Wei</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210901</creationdate><title>Direct observation and manipulation of hot electrons at room temperature</title><author>Wang, Hailu ; Wang, Fang ; Xia, Hui ; Wang, Peng ; Li, Tianxin ; Li, Juzhu ; Wang, Zhen ; Sun, Jiamin ; Wu, Peisong ; Ye, Jiafu ; Zhuang, Qiandong ; Yang, Zaixing ; Fu, Lan ; Hu, Weida ; Chen, Xiaoshuang ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hailu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Tianxin</creatorcontrib><creatorcontrib>Li, Juzhu</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jiamin</creatorcontrib><creatorcontrib>Wu, Peisong</creatorcontrib><creatorcontrib>Ye, Jiafu</creatorcontrib><creatorcontrib>Zhuang, Qiandong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Fu, Lan</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Chen, Xiaoshuang</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>National science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hailu</au><au>Wang, Fang</au><au>Xia, Hui</au><au>Wang, Peng</au><au>Li, Tianxin</au><au>Li, Juzhu</au><au>Wang, Zhen</au><au>Sun, Jiamin</au><au>Wu, Peisong</au><au>Ye, Jiafu</au><au>Zhuang, Qiandong</au><au>Yang, Zaixing</au><au>Fu, Lan</au><au>Hu, Weida</au><au>Chen, Xiaoshuang</au><au>Lu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation and manipulation of hot electrons at room temperature</atitle><jtitle>National science review</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>9</issue><spage>nwaa295</spage><epage>nwaa295</epage><pages>nwaa295-nwaa295</pages><issn>2095-5138</issn><eissn>2053-714X</eissn><abstract>Abstract
In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.
A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.</abstract><pub>Oxford University Press</pub><pmid>34691730</pmid><doi>10.1093/nsr/nwaa295</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-5138 |
ispartof | National science review, 2021-09, Vol.8 (9), p.nwaa295-nwaa295 |
issn | 2095-5138 2053-714X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433094 |
source | DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Physics |
title | Direct observation and manipulation of hot electrons at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20and%20manipulation%20of%20hot%20electrons%20at%20room%20temperature&rft.jtitle=National%20science%20review&rft.au=Wang,%20Hailu&rft.date=2021-09-01&rft.volume=8&rft.issue=9&rft.spage=nwaa295&rft.epage=nwaa295&rft.pages=nwaa295-nwaa295&rft.issn=2095-5138&rft.eissn=2053-714X&rft_id=info:doi/10.1093/nsr/nwaa295&rft_dat=%3Cproquest_pubme%3E2585922640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585922640&rft_id=info:pmid/34691730&rft_oup_id=10.1093/nsr/nwaa295&rfr_iscdi=true |