Direct observation and manipulation of hot electrons at room temperature

Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:National science review 2021-09, Vol.8 (9), p.nwaa295-nwaa295
Hauptverfasser: Wang, Hailu, Wang, Fang, Xia, Hui, Wang, Peng, Li, Tianxin, Li, Juzhu, Wang, Zhen, Sun, Jiamin, Wu, Peisong, Ye, Jiafu, Zhuang, Qiandong, Yang, Zaixing, Fu, Lan, Hu, Weida, Chen, Xiaoshuang, Lu, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page nwaa295
container_issue 9
container_start_page nwaa295
container_title National science review
container_volume 8
creator Wang, Hailu
Wang, Fang
Xia, Hui
Wang, Peng
Li, Tianxin
Li, Juzhu
Wang, Zhen
Sun, Jiamin
Wu, Peisong
Ye, Jiafu
Zhuang, Qiandong
Yang, Zaixing
Fu, Lan
Hu, Weida
Chen, Xiaoshuang
Lu, Wei
description Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications. A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.
doi_str_mv 10.1093/nsr/nwaa295
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nsr/nwaa295</oup_id><sourcerecordid>2585922640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMo7qJ78gvkJILUTZqkbS6CrH9WWPCi4C1M09QttElN0hW_vV26CF5kDvOY-fEePIQuKLmhRLKlDX5pvwBSKY7QPCWCJTnl78d7LUUiKCtmaBFCU5JRZ3nO6SmaMZ5JmjMyR-v7xhsdsSuD8TuIjbMYbIU7sE0_tNPB1XjrIjbtSHpnA4aIvXMdjqbrjYc4eHOOTmpog1kc9hl6e3x4Xa2TzcvT8-puk2hWyJhkpCbAKiBpwTMKmhAps1rQUuiy4nnOjCBcFFwaELzgYpyaGqI1T3XFaMXO0O3k2w9lZyptbPTQqt43Hfhv5aBRfz-22aoPt1MFZ4xIPhpcHQy8-xxMiKprgjZtC9a4IahUFEKmacbJiF5PqPYuBG_q3xhK1L5-NdavDvWP9OVEu6H_F_wBi7yGkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585922640</pqid></control><display><type>article</type><title>Direct observation and manipulation of hot electrons at room temperature</title><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Hailu ; Wang, Fang ; Xia, Hui ; Wang, Peng ; Li, Tianxin ; Li, Juzhu ; Wang, Zhen ; Sun, Jiamin ; Wu, Peisong ; Ye, Jiafu ; Zhuang, Qiandong ; Yang, Zaixing ; Fu, Lan ; Hu, Weida ; Chen, Xiaoshuang ; Lu, Wei</creator><creatorcontrib>Wang, Hailu ; Wang, Fang ; Xia, Hui ; Wang, Peng ; Li, Tianxin ; Li, Juzhu ; Wang, Zhen ; Sun, Jiamin ; Wu, Peisong ; Ye, Jiafu ; Zhuang, Qiandong ; Yang, Zaixing ; Fu, Lan ; Hu, Weida ; Chen, Xiaoshuang ; Lu, Wei</creatorcontrib><description>Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications. A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.</description><identifier>ISSN: 2095-5138</identifier><identifier>EISSN: 2053-714X</identifier><identifier>DOI: 10.1093/nsr/nwaa295</identifier><identifier>PMID: 34691730</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Physics</subject><ispartof>National science review, 2021-09, Vol.8 (9), p.nwaa295-nwaa295</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of China Science Publishing &amp; Media Ltd. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</citedby><cites>FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433094/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433094/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1603,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Wang, Hailu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Tianxin</creatorcontrib><creatorcontrib>Li, Juzhu</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jiamin</creatorcontrib><creatorcontrib>Wu, Peisong</creatorcontrib><creatorcontrib>Ye, Jiafu</creatorcontrib><creatorcontrib>Zhuang, Qiandong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Fu, Lan</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Chen, Xiaoshuang</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><title>Direct observation and manipulation of hot electrons at room temperature</title><title>National science review</title><description>Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications. A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.</description><subject>Physics</subject><issn>2095-5138</issn><issn>2053-714X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp9kE9LxDAQxYMo7qJ78gvkJILUTZqkbS6CrH9WWPCi4C1M09QttElN0hW_vV26CF5kDvOY-fEePIQuKLmhRLKlDX5pvwBSKY7QPCWCJTnl78d7LUUiKCtmaBFCU5JRZ3nO6SmaMZ5JmjMyR-v7xhsdsSuD8TuIjbMYbIU7sE0_tNPB1XjrIjbtSHpnA4aIvXMdjqbrjYc4eHOOTmpog1kc9hl6e3x4Xa2TzcvT8-puk2hWyJhkpCbAKiBpwTMKmhAps1rQUuiy4nnOjCBcFFwaELzgYpyaGqI1T3XFaMXO0O3k2w9lZyptbPTQqt43Hfhv5aBRfz-22aoPt1MFZ4xIPhpcHQy8-xxMiKprgjZtC9a4IahUFEKmacbJiF5PqPYuBG_q3xhK1L5-NdavDvWP9OVEu6H_F_wBi7yGkw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Wang, Hailu</creator><creator>Wang, Fang</creator><creator>Xia, Hui</creator><creator>Wang, Peng</creator><creator>Li, Tianxin</creator><creator>Li, Juzhu</creator><creator>Wang, Zhen</creator><creator>Sun, Jiamin</creator><creator>Wu, Peisong</creator><creator>Ye, Jiafu</creator><creator>Zhuang, Qiandong</creator><creator>Yang, Zaixing</creator><creator>Fu, Lan</creator><creator>Hu, Weida</creator><creator>Chen, Xiaoshuang</creator><creator>Lu, Wei</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210901</creationdate><title>Direct observation and manipulation of hot electrons at room temperature</title><author>Wang, Hailu ; Wang, Fang ; Xia, Hui ; Wang, Peng ; Li, Tianxin ; Li, Juzhu ; Wang, Zhen ; Sun, Jiamin ; Wu, Peisong ; Ye, Jiafu ; Zhuang, Qiandong ; Yang, Zaixing ; Fu, Lan ; Hu, Weida ; Chen, Xiaoshuang ; Lu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-60f0a3da028461ac00996f51b5cbd4773e5045849ea54845454f1e0cc42cd31d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hailu</creatorcontrib><creatorcontrib>Wang, Fang</creatorcontrib><creatorcontrib>Xia, Hui</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Tianxin</creatorcontrib><creatorcontrib>Li, Juzhu</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jiamin</creatorcontrib><creatorcontrib>Wu, Peisong</creatorcontrib><creatorcontrib>Ye, Jiafu</creatorcontrib><creatorcontrib>Zhuang, Qiandong</creatorcontrib><creatorcontrib>Yang, Zaixing</creatorcontrib><creatorcontrib>Fu, Lan</creatorcontrib><creatorcontrib>Hu, Weida</creatorcontrib><creatorcontrib>Chen, Xiaoshuang</creatorcontrib><creatorcontrib>Lu, Wei</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>National science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hailu</au><au>Wang, Fang</au><au>Xia, Hui</au><au>Wang, Peng</au><au>Li, Tianxin</au><au>Li, Juzhu</au><au>Wang, Zhen</au><au>Sun, Jiamin</au><au>Wu, Peisong</au><au>Ye, Jiafu</au><au>Zhuang, Qiandong</au><au>Yang, Zaixing</au><au>Fu, Lan</au><au>Hu, Weida</au><au>Chen, Xiaoshuang</au><au>Lu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation and manipulation of hot electrons at room temperature</atitle><jtitle>National science review</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>8</volume><issue>9</issue><spage>nwaa295</spage><epage>nwaa295</epage><pages>nwaa295-nwaa295</pages><issn>2095-5138</issn><eissn>2053-714X</eissn><abstract>Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications. A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications.</abstract><pub>Oxford University Press</pub><pmid>34691730</pmid><doi>10.1093/nsr/nwaa295</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-5138
ispartof National science review, 2021-09, Vol.8 (9), p.nwaa295-nwaa295
issn 2095-5138
2053-714X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433094
source DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Physics
title Direct observation and manipulation of hot electrons at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20and%20manipulation%20of%20hot%20electrons%20at%20room%20temperature&rft.jtitle=National%20science%20review&rft.au=Wang,%20Hailu&rft.date=2021-09-01&rft.volume=8&rft.issue=9&rft.spage=nwaa295&rft.epage=nwaa295&rft.pages=nwaa295-nwaa295&rft.issn=2095-5138&rft.eissn=2053-714X&rft_id=info:doi/10.1093/nsr/nwaa295&rft_dat=%3Cproquest_pubme%3E2585922640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585922640&rft_id=info:pmid/34691730&rft_oup_id=10.1093/nsr/nwaa295&rfr_iscdi=true