Direct observation and manipulation of hot electrons at room temperature
Abstract In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the ma...
Gespeichert in:
Veröffentlicht in: | National science review 2021-09, Vol.8 (9), p.nwaa295-nwaa295 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.
A distinct approach to artificially (spatially) separate hot electrons from cold ones, which thus provides a new degree of freedom in manipulating nonequilibrium electrons for both electronic and optoelectronic applications. |
---|---|
ISSN: | 2095-5138 2053-714X |
DOI: | 10.1093/nsr/nwaa295 |