Jackknife empirical likelihood confidence intervals for assessing heterogeneity in meta-analysis of rare binary event data

In meta-analysis, the heterogeneity of effect sizes across component studies is typically described by a variance parameter in a random-effects (Re) model. In the literature, methods for constructing confidence intervals (CIs) for the parameter often assume that study-level effect sizes are normally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contemporary clinical trials 2021-08, Vol.107, p.106440-106440, Article 106440
Hauptverfasser: Wang, Guanshen, Cheng, Yichen, Chen, Min, Wang, Xinlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In meta-analysis, the heterogeneity of effect sizes across component studies is typically described by a variance parameter in a random-effects (Re) model. In the literature, methods for constructing confidence intervals (CIs) for the parameter often assume that study-level effect sizes are normally distributed. However, this assumption might be violated in practice, especially in meta-analysis of rare binary events. We propose to use jackknife empirical likelihood (JEL), a nonparametric approach that uses jackknife pseudo-values, to construct CIs for the heterogeneity parameter. To compute jackknife pseudo-values, we employ a moment-based estimator and consider two commonly used weighing schemes (i.e., equal and inverse variance weights). We prove that with each scheme, the resulting log empirical likelihood ratio follows a chi-square distribution asymptotically. We further examine the performance of the proposed JEL methods and compare them with existing CIs through simulation studies and data examples that focus on data of rare binary events. Our numerical results suggest that the JEL method with equal weights compares favorably to alternatives, especially when (observed) effect sizes are non-normal and the number of component studies is large. Thus, it is worth serious consideration in statistical inference.
ISSN:1551-7144
1559-2030
DOI:10.1016/j.cct.2021.106440