Comparison among random forest, logistic regression, and existing clinical risk scores for predicting outcomes in patients with atrial fibrillation: A report from the J‐RHYTHM registry

Background Machine learning (ML) has emerged as a promising tool for risk stratification. However, few studies have applied ML to risk assessment of patients with atrial fibrillation (AF). Hypothesis We aimed to compare the performance of random forest (RF), logistic regression (LR), and conventiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cardiology (Mahwah, N.J.) N.J.), 2021-09, Vol.44 (9), p.1305-1315
Hauptverfasser: Watanabe, Eiichi, Noyama, Shunsuke, Kiyono, Ken, Inoue, Hiroshi, Atarashi, Hirotsugu, Okumura, Ken, Yamashita, Takeshi, Lip, Gregory Y. H., Kodani, Eitaro, Origasa, Hideki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Machine learning (ML) has emerged as a promising tool for risk stratification. However, few studies have applied ML to risk assessment of patients with atrial fibrillation (AF). Hypothesis We aimed to compare the performance of random forest (RF), logistic regression (LR), and conventional risk schemes in predicting the outcomes of AF. Methods We analyzed data from 7406 nonvalvular AF patients (median age 71 years, female 29.2%) enrolled in a nationwide AF registry (J‐RHYTHM Registry) and who were followed for 2 years. The endpoints were thromboembolisms, major bleeding, and all‐cause mortality. Models were generated from potential predictors using an RF model, stepwise LR model, and the thromboembolism (CHADS2 and CHA2DS2‐VASc) and major bleeding (HAS‐BLED, ORBIT, and ATRIA) scores. Results For thromboembolisms, the C‐statistic of the RF model was significantly higher than that of the LR model (0.66 vs. 0.59, p = .03) or CHA2DS2‐VASc score (0.61, p 
ISSN:0160-9289
1932-8737
DOI:10.1002/clc.23688