Preliminary Structural Data Revealed That the SARS‐CoV‐2 B.1.617 Variant's RBD Binds to ACE2 Receptor Stronger Than the Wild Type to Enhance the Infectivity

The evolution of new SARS‐CoV‐2 variants around the globe has made the COVID‐19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor‐binding motif (RBM) of the receptor‐binding domain (RBD) spike glycoprotein, i. e. L452R‐E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2021-08, Vol.22 (16), p.2641-2649
Hauptverfasser: Khan, Abbas, Wei, Dong‐Qing, Kousar, Kafila, Abubaker, Jehad, Ahmad, Sajjad, Ali, Javaid, Al‐Mulla, Fahd, Ali, Syed Shujait, Nizam‐Uddin, N., Mohammad Sayaf, Abrar, Mohammad, Anwar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The evolution of new SARS‐CoV‐2 variants around the globe has made the COVID‐19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor‐binding motif (RBM) of the receptor‐binding domain (RBD) spike glycoprotein, i. e. L452R‐E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R‐E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic‐stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural‐dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS‐CoV‐2 variants. Structural and biomolecular simulation techniques were used in this study to explore the impact of specific mutations in the B.1.617 variant of SARS‐CoV‐2 on the binding of receptor‐binding domain (RBD) to the host receptor ACE2. The analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic stability, residual flexibility, and structural compactness.
ISSN:1439-4227
1439-7633
DOI:10.1002/cbic.202100191