Common and distinct muscle synergies during level and slope locomotion in the cat

Although it is well established that the motor control system is modular, the organization of muscle synergies during locomotion and their change with ground slope are not completely understood. For example, typical reciprocal flexor-extensor muscle synergies of level walking in cats break down in d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2021-08, Vol.126 (2), p.493-515
Hauptverfasser: Klishko, Alexander N, Akyildiz, Adil, Mehta-Desai, Ricky, Prilutsky, Boris I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although it is well established that the motor control system is modular, the organization of muscle synergies during locomotion and their change with ground slope are not completely understood. For example, typical reciprocal flexor-extensor muscle synergies of level walking in cats break down in downslope: one-joint hip extensors are silent throughout the stride cycle, whereas hindlimb flexors demonstrate an additional stance phase-related electromyogram (EMG) burst (Smith JL, Carlson-Kuhta P, Trank TV. 79: 1702-1716, 1998). Here, we investigated muscle synergies during level, upslope (27°), and downslope (-27°) walking in adult cats to examine common and distinct features of modular organization of locomotor EMG activity. Cluster analysis of EMG burst onset-offset times of 12 hindlimb muscles revealed five flexor and extensor burst groups that were generally shared across slopes. Stance-related bursts of flexor muscles in downslope were placed in a burst group from level and upslope walking formed by the rectus femoris. Walking upslope changed swing/stance phase durations of level walking but not the cycle duration. Five muscle synergies computed using non-negative matrix factorization accounted for at least 95% of variance in EMG patterns in each slope. Five synergies were shared between level and upslope walking, whereas only three of those were shared with downslope synergies; these synergies were active during the swing phase and phase transitions. Two stance-related synergies of downslope walking were distinct; they comprised a mixture of flexors and extensors. We suggest that the modular organization of muscle activity during level and slope walking results from interactions between motion-related sensory feedback, CPG, and supraspinal inputs. We demonstrated that the atypical EMG activities during cat downslope walking, silent one-joint hip extensors and stance-related EMG bursts in flexors, have many features shared with activities of level and upslope walking. Majority of EMG burst groups and muscle synergies were shared among these slopes, and upslope modulated the swing/stance phase duration but not cycle duration. Thus, synergistic EMG activities in all slopes might result from a shared CPG receiving somatosensory and supraspinal inputs.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00310.2020