Two-dimensional electronic–vibrational sum frequency spectroscopy for interactions of electronic and nuclear motions at interfaces
Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-08, Vol.118 (34), p.1-9 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interactions of electronic and vibrational degrees of freedom are essential for understanding excited-states relaxation pathways of molecular systems at interfaces and surfaces. Here, we present the development of interface-specific two-dimensional electronic–vibrational sum frequency generation (2D-EVSFG) spectroscopy for electronic–vibrational couplings for excited states at interfaces and surfaces. We demonstrate this 2D-EVSFG technique by investigating photoexcited interface-active (E)-4-((4-(dihexylamino) phenyl)diazinyl)-1-methylpyridin-1- lum (AP3) molecules at the air–water interface as an example. Our 2D-EVSFG experiments show strong vibronic couplings of interfacial AP3 molecules upon photoexcitation and subsequent relaxation of a locally excited (LE) state. Time-dependent 2DEVSFG experiments indicate that the relaxation of the LE state, S₂, is strongly coupled with two high-frequency modes of 1,529.1 and 1,568.1 cm−1. Quantum chemistry calculations further verify that the strong vibronic couplings of the two vibrations promote the transition from the S₂ state to the lower excited state S₁. We believe that this development of 2D-EVSFG opens up an avenue of understanding excited-state dynamics related to interfaces and surfaces. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.2100608118 |