Using the Stochastic Gradient Descent Optimization Algorithm on Estimating of Reactivity Ratios

This paper describes an improved method of calculating reactivity ratios by applying the neuronal networks optimization algorithm, named gradient descent. The presented method is integral and has been compared to the following existing methods: Fineman–Ross, Tidwell–Mortimer, Kelen–Tüdös, extended K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-08, Vol.14 (16), p.4764
Hauptverfasser: Fazakas-Anca, Iosif Sorin, Modrea, Arina, Vlase, Sorin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes an improved method of calculating reactivity ratios by applying the neuronal networks optimization algorithm, named gradient descent. The presented method is integral and has been compared to the following existing methods: Fineman–Ross, Tidwell–Mortimer, Kelen–Tüdös, extended Kelen–Tüdös and Error in Variable Methods. A comparison of the reactivity ratios that obtained different levels of conversions was made based on the Fisher criterion. The new calculation method for reactivity ratios shows better results than these other methods.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14164764