Industrial Thermal Insulation Properties above Sintering Temperatures
Processing highly flammable products, the oil and gas (O&G) industry can experience major explosions and fires, which may expose pressurized equipment to high thermal loads. In 2020, oil fires occurred at two Norwegian O&G processing plants. To reduce the escalation risk, passive fire protec...
Gespeichert in:
Veröffentlicht in: | Materials 2021-08, Vol.14 (16), p.4721 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Processing highly flammable products, the oil and gas (O&G) industry can experience major explosions and fires, which may expose pressurized equipment to high thermal loads. In 2020, oil fires occurred at two Norwegian O&G processing plants. To reduce the escalation risk, passive fire protection may serve as a consequence-reducing barrier. For heat or cold conservation, equipment and piping often require thermal insulation, which may offer some fire protection. In the present study, a representative thermal insulation (certified up to 700 °C) was examined with respect to dimensional changes and thermal transport properties after heat treatment to temperatures in the range of 700 °C to 1200 °C. Post heat treatment, the thermal conductivity of each test specimen was recorded at ambient temperature and up to 700 °C, which was the upper limit for the applied measurement method. Based on thermal transport theory for porous and/or amorphous materials, the thermal conductivity at the heat treatment temperature above 700 °C was estimated by extrapolation. The dimensional changes due to, e.g., sintering, were also analyzed. Empirical equations describing the thermal conductivity, the dimensional changes and possible crack formation were developed. It should be noted that the thermal insulation degradation, especially at temperatures approaching 1200 °C, is massive. Thus, future numerical modeling may be difficult above 1150 °C, due to abrupt changes in properties as well as crack development and crack tortuosity. However, if the thermal insulation is protected by a thin layer of more robust material, e.g., passive fire protection to keep the thermal insulation at temperatures below 1100 °C, future modeling seems promising. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14164721 |