Bias and Precision of Continuous Norms Obtained Using Quantile Regression

Continuous norming is an increasingly popular approach to establish norms when the performance on a test is dependent on age. However, current continuous norming methods rely on a number of assumptions that are quite restrictive and may introduce bias. In this study, quantile regression was introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Assessment (Odessa, Fla.) Fla.), 2021-09, Vol.28 (6), p.1735-1750
Hauptverfasser: Crompvoets, Elise A. V., Keuning, Jos, Emons, Wilco H. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuous norming is an increasingly popular approach to establish norms when the performance on a test is dependent on age. However, current continuous norming methods rely on a number of assumptions that are quite restrictive and may introduce bias. In this study, quantile regression was introduced as more flexible alternative. Bias and precision of quantile regression-based norming were investigated with (age-)group as covariate, varying sample sizes and score distributions, and compared with bias and precision of two other norming methods: traditional norming and mean regression-based norming. Simulations showed the norms obtained using quantile regression to be most precise in almost all conditions. Norms were nevertheless biased when the score distributions reflected a ceiling effect. Quantile regression-based norming can thus be considered a promising alternative to traditional norming and mean regression-based norming, but only if the shape of the score distribution can be expected to be close to normal.
ISSN:1073-1911
1552-3489
DOI:10.1177/1073191120910201