Bias and Precision of Continuous Norms Obtained Using Quantile Regression
Continuous norming is an increasingly popular approach to establish norms when the performance on a test is dependent on age. However, current continuous norming methods rely on a number of assumptions that are quite restrictive and may introduce bias. In this study, quantile regression was introduc...
Gespeichert in:
Veröffentlicht in: | Assessment (Odessa, Fla.) Fla.), 2021-09, Vol.28 (6), p.1735-1750 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Continuous norming is an increasingly popular approach to establish norms when the performance on a test is dependent on age. However, current continuous norming methods rely on a number of assumptions that are quite restrictive and may introduce bias. In this study, quantile regression was introduced as more flexible alternative. Bias and precision of quantile regression-based norming were investigated with (age-)group as covariate, varying sample sizes and score distributions, and compared with bias and precision of two other norming methods: traditional norming and mean regression-based norming. Simulations showed the norms obtained using quantile regression to be most precise in almost all conditions. Norms were nevertheless biased when the score distributions reflected a ceiling effect. Quantile regression-based norming can thus be considered a promising alternative to traditional norming and mean regression-based norming, but only if the shape of the score distribution can be expected to be close to normal. |
---|---|
ISSN: | 1073-1911 1552-3489 |
DOI: | 10.1177/1073191120910201 |