Biomass Production Potential in a River under Climate Change Scenarios

Excessive production of biomass, in times of intensification of agriculture and climate change, is again becoming one of the biggest environmental issues. Identification of sources and effects of this phenomenon in a river catchment in the space–time continuum has been supported by advanced environm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-08, Vol.55 (16), p.11113-11124
Hauptverfasser: Orlińska-Woźniak, Paulina, Szalińska, Ewa, Jakusik, Ewa, Bojanowski, Damian, Wilk, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excessive production of biomass, in times of intensification of agriculture and climate change, is again becoming one of the biggest environmental issues. Identification of sources and effects of this phenomenon in a river catchment in the space–time continuum has been supported by advanced environmental modules combined on a digital platform (Macromodel DNS/SWAT). This tool enabled the simulation of nutrient loads and chlorophyll “a” for the Nielba River catchment (central-western Poland) for the biomass production potential (defined here as a TN:TP ratio) analysis. Major differences have been observed between sections of the Nielba River with low biomass production in the upper part, controlled by TN:TP ratios over 65, and high chlorophyll “a” concentrations in the lower part, affected by biomass transport for the flow-through lakes. Under the long and short-term RCP4.5 and RCP8.5 climate change scenarios, this pattern will be emphasized. The obtained results showed that unfavorable biomass production potential will be maintained in the upper riverine sections due to a further increase in phosphorus loads induced by precipitation growth. Precipitation alone will increase biomass production, while precipitation combined with temperature can even enhance this production in the existing hot spots.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c03211