The Role of Phosphate in Alcohol-Induced Experimental Pancreatitis

Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 2021-09, Vol.161 (3), p.982-995.e2
Hauptverfasser: Farooq, Ahmad, Richman, Courtney M., Swain, Sandip M., Shahid, Rafiq A., Vigna, Steven R., Liddle, Rodger A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heavy alcohol consumption is a common cause of acute pancreatitis; however, alcohol abuse does not always result in clinical pancreatitis. As a consequence, the factors responsible for alcohol-induced pancreatitis are not well understood. In experimental animals, it has been difficult to produce pancreatitis with alcohol. Clinically, alcohol use predisposes to hypophosphatemia, and hypophosphatemia has been observed in some patients with acute pancreatitis. Because of abundant protein synthesis, the pancreas has high metabolic demands, and reduced mitochondrial function leads to organelle dysfunction and pancreatitis. We proposed, therefore, that phosphate deficiency might limit adenosine triphosphate synthesis and thereby contribute to alcohol-induced pancreatitis. Mice were fed a low-phosphate diet (LPD) before orogastric administration of ethanol. Direct effects of phosphate and ethanol were evaluated in vitro in isolated mouse pancreatic acini. LPD reduced serum phosphate levels. Intragastric administration of ethanol to animals maintained on an LPD caused severe pancreatitis that was ameliorated by phosphate repletion. In pancreatic acinar cells, low-phosphate conditions increased susceptibility to ethanol-induced cellular dysfunction through decreased bioenergetic stores, specifically affecting total cellular adenosine triphosphate and mitochondrial function. Phosphate supplementation prevented ethanol-associated cellular injury. Phosphate status plays a critical role in predisposition to and protection from alcohol-induced acinar cell dysfunction and the development of acute alcohol-induced pancreatitis. This finding may explain why pancreatitis develops in only some individuals with heavy alcohol use and suggests a potential novel therapeutic approach to pancreatitis. Finally, an LPD plus ethanol provides a new model for studying alcohol-associated pancreatic injury.
ISSN:0016-5085
1528-0012
DOI:10.1053/j.gastro.2021.05.048