Design of Deep Learning Model for Task-Evoked fMRI Data Classification

Machine learning methods have been successfully applied to neuroimaging signals, one of which is to decode specific task states from functional magnetic resonance imaging (fMRI) data. In this paper, we propose a model that simultaneously utilizes characteristics of both spatial and temporal sequenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2021, Vol.2021 (1), p.6660866-6660866
Hauptverfasser: Huang, Xiaojie, Xiao, Jun, Wu, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine learning methods have been successfully applied to neuroimaging signals, one of which is to decode specific task states from functional magnetic resonance imaging (fMRI) data. In this paper, we propose a model that simultaneously utilizes characteristics of both spatial and temporal sequential information of fMRI data with deep neural networks to classify the fMRI task states. We designed a convolution network module and a recurrent network module to extract the spatial and temporal features of fMRI data, respectively. In particular, we also add the attention mechanism to the recurrent network module, which more effectively highlights the brain activation state at the moment of reaction. We evaluated the model using task-evoked fMRI data from the Human Connectome Project (HCP) dataset, the classification accuracy got 94.31%, and the experimental results have shown that the model can effectively distinguish the brain states under different task stimuli.
ISSN:1687-5265
1687-5273
DOI:10.1155/2021/6660866