IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data

The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of visualization 2021, Vol.24 (6), p.1253-1266
Hauptverfasser: Dai, Haoran, Tao, Yubo, He, Xiangyang, Lin, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1266
container_issue 6
container_start_page 1253
container_title Journal of visualization
container_volume 24
creator Dai, Haoran
Tao, Yubo
He, Xiangyang
Lin, Hai
description The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods. Graphic abstract
doi_str_mv 10.1007/s12650-021-00770-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564487119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi0EIgu8QA6RJS5cHLy1Fw5IKLsUKRc4cbBst504dLcHe3qSvH08mZAAB04uu776XVU_AHsEHxCM5adKqOgwwpSgdpUY0VdgmyjZIaVl97rFjDOk2sMW2Kn1BjeSS_IWbDHOqRZKbIMf5zUf3y2GXEL5DO0EU811LtH6gPqSVmGCsdgx3ObyE8ZcIDuC9douQmPtcF9ThTlCl_IY-uTtAFd5mMcAe7u078CbaIca3j-du-D7yfG3wzN0cXl6fvj1Anku-RI5TLRXVPecStaLnistpMZOqsic99HjSJhwnbe9c330HdbcUdzRNoJkgrFd8GWju5hda8OHaVnsYBYljbbcm2yT-TszpWtzlVdGMSkIoU3g45NAyb_mUJdmTNWHYbBTyHM1tBOcK0mIbuiHf9CbPJe2ijWlmFZSqbUg3VC-5FpLiM_NEGzW3pmNd6Y5Yh69M-ui_T_HeC75bVYD2AaoLTVdhfLy939kHwBHD6VY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583987882</pqid></control><display><type>article</type><title>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dai, Haoran ; Tao, Yubo ; He, Xiangyang ; Lin, Hai</creator><creatorcontrib>Dai, Haoran ; Tao, Yubo ; He, Xiangyang ; Lin, Hai</creatorcontrib><description>The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods. Graphic abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-021-00770-2</identifier><identifier>PMID: 34429686</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical data ; Classical and Continuum Physics ; Computer Imaging ; Electronic devices ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Machine learning ; Molecular structure ; Octrees ; Pattern Recognition and Graphics ; Regular Paper ; Representations ; Retrieval ; Shape recognition ; Vision</subject><ispartof>Journal of visualization, 2021, Vol.24 (6), p.1253-1266</ispartof><rights>The Visualization Society of Japan 2021</rights><rights>The Visualization Society of Japan 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</citedby><cites>FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</cites><orcidid>0000-0003-1780-186X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-021-00770-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-021-00770-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34429686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Haoran</creatorcontrib><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>He, Xiangyang</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><title>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><addtitle>J Vis (Tokyo)</addtitle><description>The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods. Graphic abstract</description><subject>Biomedical data</subject><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Octrees</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Shape recognition</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcluFDEQhi0EIgu8QA6RJS5cHLy1Fw5IKLsUKRc4cbBst504dLcHe3qSvH08mZAAB04uu776XVU_AHsEHxCM5adKqOgwwpSgdpUY0VdgmyjZIaVl97rFjDOk2sMW2Kn1BjeSS_IWbDHOqRZKbIMf5zUf3y2GXEL5DO0EU811LtH6gPqSVmGCsdgx3ObyE8ZcIDuC9douQmPtcF9ThTlCl_IY-uTtAFd5mMcAe7u078CbaIca3j-du-D7yfG3wzN0cXl6fvj1Anku-RI5TLRXVPecStaLnistpMZOqsic99HjSJhwnbe9c330HdbcUdzRNoJkgrFd8GWju5hda8OHaVnsYBYljbbcm2yT-TszpWtzlVdGMSkIoU3g45NAyb_mUJdmTNWHYbBTyHM1tBOcK0mIbuiHf9CbPJe2ijWlmFZSqbUg3VC-5FpLiM_NEGzW3pmNd6Y5Yh69M-ui_T_HeC75bVYD2AaoLTVdhfLy939kHwBHD6VY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dai, Haoran</creator><creator>Tao, Yubo</creator><creator>He, Xiangyang</creator><creator>Lin, Hai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1780-186X</orcidid></search><sort><creationdate>2021</creationdate><title>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</title><author>Dai, Haoran ; Tao, Yubo ; He, Xiangyang ; Lin, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical data</topic><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Octrees</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Shape recognition</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Haoran</creatorcontrib><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>He, Xiangyang</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Haoran</au><au>Tao, Yubo</au><au>He, Xiangyang</au><au>Lin, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><addtitle>J Vis (Tokyo)</addtitle><date>2021</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1253</spage><epage>1266</epage><pages>1253-1266</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods. Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34429686</pmid><doi>10.1007/s12650-021-00770-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1780-186X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2021, Vol.24 (6), p.1253-1266
issn 1343-8875
1875-8975
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376112
source SpringerLink Journals - AutoHoldings
subjects Biomedical data
Classical and Continuum Physics
Computer Imaging
Electronic devices
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Machine learning
Molecular structure
Octrees
Pattern Recognition and Graphics
Regular Paper
Representations
Retrieval
Shape recognition
Vision
title IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IsoExplorer:%20an%20isosurface-driven%20framework%20for%203D%20shape%20analysis%20of%20biomedical%20volume%20data&rft.jtitle=Journal%20of%20visualization&rft.au=Dai,%20Haoran&rft.date=2021&rft.volume=24&rft.issue=6&rft.spage=1253&rft.epage=1266&rft.pages=1253-1266&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-021-00770-2&rft_dat=%3Cproquest_pubme%3E2564487119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583987882&rft_id=info:pmid/34429686&rfr_iscdi=true