IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data
The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2021, Vol.24 (6), p.1253-1266 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1266 |
---|---|
container_issue | 6 |
container_start_page | 1253 |
container_title | Journal of visualization |
container_volume | 24 |
creator | Dai, Haoran Tao, Yubo He, Xiangyang Lin, Hai |
description | The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods.
Graphic abstract |
doi_str_mv | 10.1007/s12650-021-00770-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564487119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi0EIgu8QA6RJS5cHLy1Fw5IKLsUKRc4cbBst504dLcHe3qSvH08mZAAB04uu776XVU_AHsEHxCM5adKqOgwwpSgdpUY0VdgmyjZIaVl97rFjDOk2sMW2Kn1BjeSS_IWbDHOqRZKbIMf5zUf3y2GXEL5DO0EU811LtH6gPqSVmGCsdgx3ObyE8ZcIDuC9douQmPtcF9ThTlCl_IY-uTtAFd5mMcAe7u078CbaIca3j-du-D7yfG3wzN0cXl6fvj1Anku-RI5TLRXVPecStaLnistpMZOqsic99HjSJhwnbe9c330HdbcUdzRNoJkgrFd8GWju5hda8OHaVnsYBYljbbcm2yT-TszpWtzlVdGMSkIoU3g45NAyb_mUJdmTNWHYbBTyHM1tBOcK0mIbuiHf9CbPJe2ijWlmFZSqbUg3VC-5FpLiM_NEGzW3pmNd6Y5Yh69M-ui_T_HeC75bVYD2AaoLTVdhfLy939kHwBHD6VY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583987882</pqid></control><display><type>article</type><title>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dai, Haoran ; Tao, Yubo ; He, Xiangyang ; Lin, Hai</creator><creatorcontrib>Dai, Haoran ; Tao, Yubo ; He, Xiangyang ; Lin, Hai</creatorcontrib><description>The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods.
Graphic abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-021-00770-2</identifier><identifier>PMID: 34429686</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical data ; Classical and Continuum Physics ; Computer Imaging ; Electronic devices ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Machine learning ; Molecular structure ; Octrees ; Pattern Recognition and Graphics ; Regular Paper ; Representations ; Retrieval ; Shape recognition ; Vision</subject><ispartof>Journal of visualization, 2021, Vol.24 (6), p.1253-1266</ispartof><rights>The Visualization Society of Japan 2021</rights><rights>The Visualization Society of Japan 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</citedby><cites>FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</cites><orcidid>0000-0003-1780-186X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12650-021-00770-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12650-021-00770-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34429686$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Haoran</creatorcontrib><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>He, Xiangyang</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><title>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><addtitle>J Vis (Tokyo)</addtitle><description>The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods.
Graphic abstract</description><subject>Biomedical data</subject><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Electronic devices</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Octrees</subject><subject>Pattern Recognition and Graphics</subject><subject>Regular Paper</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Shape recognition</subject><subject>Vision</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcluFDEQhi0EIgu8QA6RJS5cHLy1Fw5IKLsUKRc4cbBst504dLcHe3qSvH08mZAAB04uu776XVU_AHsEHxCM5adKqOgwwpSgdpUY0VdgmyjZIaVl97rFjDOk2sMW2Kn1BjeSS_IWbDHOqRZKbIMf5zUf3y2GXEL5DO0EU811LtH6gPqSVmGCsdgx3ObyE8ZcIDuC9douQmPtcF9ThTlCl_IY-uTtAFd5mMcAe7u078CbaIca3j-du-D7yfG3wzN0cXl6fvj1Anku-RI5TLRXVPecStaLnistpMZOqsic99HjSJhwnbe9c330HdbcUdzRNoJkgrFd8GWju5hda8OHaVnsYBYljbbcm2yT-TszpWtzlVdGMSkIoU3g45NAyb_mUJdmTNWHYbBTyHM1tBOcK0mIbuiHf9CbPJe2ijWlmFZSqbUg3VC-5FpLiM_NEGzW3pmNd6Y5Yh69M-ui_T_HeC75bVYD2AaoLTVdhfLy939kHwBHD6VY</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Dai, Haoran</creator><creator>Tao, Yubo</creator><creator>He, Xiangyang</creator><creator>Lin, Hai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1780-186X</orcidid></search><sort><creationdate>2021</creationdate><title>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</title><author>Dai, Haoran ; Tao, Yubo ; He, Xiangyang ; Lin, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b019c829d4273d6d4896790b78f3bccfc0f136b5cadbbdfc5094b205229673633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical data</topic><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Electronic devices</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Octrees</topic><topic>Pattern Recognition and Graphics</topic><topic>Regular Paper</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Shape recognition</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Haoran</creatorcontrib><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>He, Xiangyang</creatorcontrib><creatorcontrib>Lin, Hai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Haoran</au><au>Tao, Yubo</au><au>He, Xiangyang</au><au>Lin, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><addtitle>J Vis (Tokyo)</addtitle><date>2021</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1253</spage><epage>1266</epage><pages>1253-1266</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods.
Graphic abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34429686</pmid><doi>10.1007/s12650-021-00770-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1780-186X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2021, Vol.24 (6), p.1253-1266 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8376112 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical data Classical and Continuum Physics Computer Imaging Electronic devices Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Machine learning Molecular structure Octrees Pattern Recognition and Graphics Regular Paper Representations Retrieval Shape recognition Vision |
title | IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IsoExplorer:%20an%20isosurface-driven%20framework%20for%203D%20shape%20analysis%20of%20biomedical%20volume%20data&rft.jtitle=Journal%20of%20visualization&rft.au=Dai,%20Haoran&rft.date=2021&rft.volume=24&rft.issue=6&rft.spage=1253&rft.epage=1266&rft.pages=1253-1266&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-021-00770-2&rft_dat=%3Cproquest_pubme%3E2564487119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583987882&rft_id=info:pmid/34429686&rfr_iscdi=true |