IsoExplorer: an isosurface-driven framework for 3D shape analysis of biomedical volume data
The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent...
Gespeichert in:
Veröffentlicht in: | Journal of visualization 2021, Vol.24 (6), p.1253-1266 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high-resolution scanning devices developed in recent decades provide biomedical volume datasets that support the study of molecular structure and drug design. Isosurface analysis is an important tool in these studies, and the key is to construct suitable description vectors to support subsequent tasks, such as classification and retrieval. Traditional methods based on handcrafted features are insufficient for dealing with complex structures, while deep learning-based approaches have high memory and computation costs when dealing directly with volume data. To address these problems, we propose IsoExplorer, an isosurface-driven framework for 3D shape analysis of biomedical volume data. We first extract isosurfaces from volume data and split them into individual 3D shapes according to their connectivity. Then, we utilize octree-based convolution to design a variational autoencoder model that learns the latent representations of the shape. Finally, these latent representations are used for low-dimensional isosurface representation and shape retrieval. We demonstrate the effectiveness and usefulness of IsoExplorer via isosurface similarity analysis, shape retrieval of real-world data, and comparison with existing methods.
Graphic abstract |
---|---|
ISSN: | 1343-8875 1875-8975 |
DOI: | 10.1007/s12650-021-00770-2 |