Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection

[Display omitted] •SSRIs antidepressant drugs repurposing against COVID-19 showed promising results.•The binding of SSRIs and SARS-COV-2 main protease was studied by molecular docking.•Fluoxetine hydrochloride (FH) had the highest affinity to SARS-COV-2 main protease.•FH was loaded in lipid polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2021-09, Vol.607, p.121023-121023, Article 121023
Hauptverfasser: Khater, Shaymaa Elsayed, El-khouly, Ahmed, Abdel-Bar, Hend Mohamed, Al-mahallawi, Abdulaziz Mohsen, Ghorab, Dalia Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •SSRIs antidepressant drugs repurposing against COVID-19 showed promising results.•The binding of SSRIs and SARS-COV-2 main protease was studied by molecular docking.•Fluoxetine hydrochloride (FH) had the highest affinity to SARS-COV-2 main protease.•FH was loaded in lipid polymer hybrid nanoparticles (LPH) to improve its efficacy.•FH-LPH represents a promising therapy for the COVID-19 pandemic. Up to date, there were no approved drugs against coronavirus (COVID-19) disease that dangerously affects global health and the economy. Repurposing the existing drugs would be a promising approach for COVID-19 management. The antidepressant drugs, selective serotonin reuptake inhibitors (SSRIs) class, have antiviral, anti-inflammatory, and anticoagulant effects, which makes them auspicious drugs for COVID 19 treatment. Therefore, this study aimed to predict the possible therapeutic activity of SSRIs against COVID-19. Firstly, molecular docking studies were performed to hypothesize the possible interaction of SSRIs to the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-COV-2) main protease. Secondly, the candidate drug was loaded in lipid polymer hybrid (LPH) nanoparticles to enhance its activity. The studied SSRIs were Fluoxetine hydrochloride (FH), Atomoxteine, Paroxetine, Nisoxteine, Repoxteine RR, and Repoxteine SS. Interestingly, FH could effectively bind with SARS-COV-2 main protease via hydrogen bond formation with low binding energy (-6.7 kcal/mol). Moreover, the optimization of FH-LPH formulation achieved 65.1 ± 2.7% encapsulation efficiency, 10.3 ± 0.4% loading efficiency, 98.5 ± 3.5 nm particle size, and −10.5 ± 0.45 mV zeta potential. Additionally, it improved cellular internalization in a time-dependent manner with good biocompatibility on Human lung fibroblast (CCD-19Lu) cells. Therefore, the study suggested the potential activity of FH-LPH nanoparticles against the COVID-19 pandemic.
ISSN:0378-5173
1873-3476
1873-3476
DOI:10.1016/j.ijpharm.2021.121023