Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma
The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and...
Gespeichert in:
Veröffentlicht in: | Cancer cell 2021-06, Vol.39 (6), p.779-792.e11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 792.e11 |
---|---|
container_issue | 6 |
container_start_page | 779 |
container_title | Cancer cell |
container_volume | 39 |
creator | Hara, Toshiro Chanoch-Myers, Rony Mathewson, Nathan D. Myskiw, Chad Atta, Lyla Bussema, Lillian Eichhorn, Stephen W. Greenwald, Alissa C. Kinker, Gabriela S. Rodman, Christopher Gonzalez Castro, L. Nicolas Wakimoto, Hiroaki Rozenblatt-Rosen, Orit Zhuang, Xiaowei Fan, Jean Hunter, Tony Verma, Inder M. Wucherpfennig, Kai W. Regev, Aviv Suvà, Mario L. Tirosh, Itay |
description | The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.
[Display omitted]
•Macrophages induce the MES-like state of glioblastoma cells•Induction is mediated by macrophage-derived OSM interacting with OSMR/LIFR-GP130•Subsets of glioblastoma-associated macrophages express a related MES-like program•The MES-like state in glioblastoma is associated with cytotoxic T cells programs
Hara et al. combine single-cell RNA sequencing and functional experiments to explore the crosstalk between glioblastoma and the microenvironment, revealing that macrophage-derived OSM induces the mesenchymal-like state of glioblastoma, a state associated with upregulation of major histocompatibility complex genes, and with potential implications for immunotherapy. |
doi_str_mv | 10.1016/j.ccell.2021.05.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1535610821002683</els_id><sourcerecordid>2537631103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-7bcf04dc70c9303da5ec32cf50758e312df00b68590eb6193c0b22425cf724a83</originalsourceid><addsrcrecordid>eNp9kctuFDEQRa0IlITAFyAhL9l0U7bHj1mAhCIekSKxgbXldlcnHrrtYHsG5e_xMENENlnZct17q1yHkNcMegZMvdv03uM89xw460H2APyEnDOjTSeUUc_aXQrZKQbmjLwoZQPNxfT6lJyJFRjNFD8n6SpWzM7XkGKhA9bfiJF6Fz1muo8v1MWRhmXZRjw-jDnskNbsYgkHX010wYLR394vbu7m8BNpqa5ioSHSmzmkYXalpsW9JM8nNxd8dTwvyI_Pn75ffu2uv325uvx43XnJZe304CdYjV6DXwsQo5PoBfeTBC0NCsbHCWBQRq4BB8XWwsPA-YpLP2m-ckZckA-H3LvtsODoMbZ5Z3uXw-LyvU0u2MeVGG7tTdpZI5TSElrA22NATr-2WKpdQtn_30VM22K5FFoJxkA0qThIfU6lZJwe2jCwe1R2Y_-isntUFqRtqJrrzf8TPnj-sWmC9wcBtj3tAmZbfGg7xjFk9NWOKTzZ4A80OKky</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2537631103</pqid></control><display><type>article</type><title>Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hara, Toshiro ; Chanoch-Myers, Rony ; Mathewson, Nathan D. ; Myskiw, Chad ; Atta, Lyla ; Bussema, Lillian ; Eichhorn, Stephen W. ; Greenwald, Alissa C. ; Kinker, Gabriela S. ; Rodman, Christopher ; Gonzalez Castro, L. Nicolas ; Wakimoto, Hiroaki ; Rozenblatt-Rosen, Orit ; Zhuang, Xiaowei ; Fan, Jean ; Hunter, Tony ; Verma, Inder M. ; Wucherpfennig, Kai W. ; Regev, Aviv ; Suvà, Mario L. ; Tirosh, Itay</creator><creatorcontrib>Hara, Toshiro ; Chanoch-Myers, Rony ; Mathewson, Nathan D. ; Myskiw, Chad ; Atta, Lyla ; Bussema, Lillian ; Eichhorn, Stephen W. ; Greenwald, Alissa C. ; Kinker, Gabriela S. ; Rodman, Christopher ; Gonzalez Castro, L. Nicolas ; Wakimoto, Hiroaki ; Rozenblatt-Rosen, Orit ; Zhuang, Xiaowei ; Fan, Jean ; Hunter, Tony ; Verma, Inder M. ; Wucherpfennig, Kai W. ; Regev, Aviv ; Suvà, Mario L. ; Tirosh, Itay</creatorcontrib><description>The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.
[Display omitted]
•Macrophages induce the MES-like state of glioblastoma cells•Induction is mediated by macrophage-derived OSM interacting with OSMR/LIFR-GP130•Subsets of glioblastoma-associated macrophages express a related MES-like program•The MES-like state in glioblastoma is associated with cytotoxic T cells programs
Hara et al. combine single-cell RNA sequencing and functional experiments to explore the crosstalk between glioblastoma and the microenvironment, revealing that macrophage-derived OSM induces the mesenchymal-like state of glioblastoma, a state associated with upregulation of major histocompatibility complex genes, and with potential implications for immunotherapy.</description><identifier>ISSN: 1535-6108</identifier><identifier>EISSN: 1878-3686</identifier><identifier>DOI: 10.1016/j.ccell.2021.05.002</identifier><identifier>PMID: 34087162</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Brain Neoplasms - genetics ; Brain Neoplasms - immunology ; Brain Neoplasms - pathology ; Cells, Cultured ; Cytokine Receptor gp130 - genetics ; Cytokine Receptor gp130 - metabolism ; Cytotoxicity, Immunologic ; GBM ; Gene Expression Regulation, Neoplastic ; glioblastoma ; Glioblastoma - genetics ; Glioblastoma - immunology ; Glioblastoma - pathology ; Humans ; Leukemia Inhibitory Factor Receptor alpha Subunit - genetics ; Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism ; macrophage ; mesenchymal ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Oncostatin M - metabolism ; Oncostatin M Receptor beta Subunit - genetics ; Oncostatin M Receptor beta Subunit - metabolism ; OSM ; scRNA-seq ; STAT3 Transcription Factor - genetics ; STAT3 Transcription Factor - metabolism ; T-Lymphocytes - immunology ; Tumor Microenvironment ; Tumor-Associated Macrophages - immunology ; Tumor-Associated Macrophages - pathology</subject><ispartof>Cancer cell, 2021-06, Vol.39 (6), p.779-792.e11</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-7bcf04dc70c9303da5ec32cf50758e312df00b68590eb6193c0b22425cf724a83</citedby><cites>FETCH-LOGICAL-c525t-7bcf04dc70c9303da5ec32cf50758e312df00b68590eb6193c0b22425cf724a83</cites><orcidid>0000-0002-8895-2609 ; 0000-0002-4389-3393 ; 0000-0002-6113-0082 ; 0000-0001-5469-3816 ; 0000-0002-8197-5795 ; 0000-0001-7699-5188 ; 0000-0002-4059-075X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ccell.2021.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34087162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hara, Toshiro</creatorcontrib><creatorcontrib>Chanoch-Myers, Rony</creatorcontrib><creatorcontrib>Mathewson, Nathan D.</creatorcontrib><creatorcontrib>Myskiw, Chad</creatorcontrib><creatorcontrib>Atta, Lyla</creatorcontrib><creatorcontrib>Bussema, Lillian</creatorcontrib><creatorcontrib>Eichhorn, Stephen W.</creatorcontrib><creatorcontrib>Greenwald, Alissa C.</creatorcontrib><creatorcontrib>Kinker, Gabriela S.</creatorcontrib><creatorcontrib>Rodman, Christopher</creatorcontrib><creatorcontrib>Gonzalez Castro, L. Nicolas</creatorcontrib><creatorcontrib>Wakimoto, Hiroaki</creatorcontrib><creatorcontrib>Rozenblatt-Rosen, Orit</creatorcontrib><creatorcontrib>Zhuang, Xiaowei</creatorcontrib><creatorcontrib>Fan, Jean</creatorcontrib><creatorcontrib>Hunter, Tony</creatorcontrib><creatorcontrib>Verma, Inder M.</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Suvà, Mario L.</creatorcontrib><creatorcontrib>Tirosh, Itay</creatorcontrib><title>Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma</title><title>Cancer cell</title><addtitle>Cancer Cell</addtitle><description>The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.
[Display omitted]
•Macrophages induce the MES-like state of glioblastoma cells•Induction is mediated by macrophage-derived OSM interacting with OSMR/LIFR-GP130•Subsets of glioblastoma-associated macrophages express a related MES-like program•The MES-like state in glioblastoma is associated with cytotoxic T cells programs
Hara et al. combine single-cell RNA sequencing and functional experiments to explore the crosstalk between glioblastoma and the microenvironment, revealing that macrophage-derived OSM induces the mesenchymal-like state of glioblastoma, a state associated with upregulation of major histocompatibility complex genes, and with potential implications for immunotherapy.</description><subject>Animals</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - immunology</subject><subject>Brain Neoplasms - pathology</subject><subject>Cells, Cultured</subject><subject>Cytokine Receptor gp130 - genetics</subject><subject>Cytokine Receptor gp130 - metabolism</subject><subject>Cytotoxicity, Immunologic</subject><subject>GBM</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>glioblastoma</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - immunology</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>Leukemia Inhibitory Factor Receptor alpha Subunit - genetics</subject><subject>Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism</subject><subject>macrophage</subject><subject>mesenchymal</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Oncostatin M - metabolism</subject><subject>Oncostatin M Receptor beta Subunit - genetics</subject><subject>Oncostatin M Receptor beta Subunit - metabolism</subject><subject>OSM</subject><subject>scRNA-seq</subject><subject>STAT3 Transcription Factor - genetics</subject><subject>STAT3 Transcription Factor - metabolism</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumor Microenvironment</subject><subject>Tumor-Associated Macrophages - immunology</subject><subject>Tumor-Associated Macrophages - pathology</subject><issn>1535-6108</issn><issn>1878-3686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctuFDEQRa0IlITAFyAhL9l0U7bHj1mAhCIekSKxgbXldlcnHrrtYHsG5e_xMENENlnZct17q1yHkNcMegZMvdv03uM89xw460H2APyEnDOjTSeUUc_aXQrZKQbmjLwoZQPNxfT6lJyJFRjNFD8n6SpWzM7XkGKhA9bfiJF6Fz1muo8v1MWRhmXZRjw-jDnskNbsYgkHX010wYLR394vbu7m8BNpqa5ioSHSmzmkYXalpsW9JM8nNxd8dTwvyI_Pn75ffu2uv325uvx43XnJZe304CdYjV6DXwsQo5PoBfeTBC0NCsbHCWBQRq4BB8XWwsPA-YpLP2m-ckZckA-H3LvtsODoMbZ5Z3uXw-LyvU0u2MeVGG7tTdpZI5TSElrA22NATr-2WKpdQtn_30VM22K5FFoJxkA0qThIfU6lZJwe2jCwe1R2Y_-isntUFqRtqJrrzf8TPnj-sWmC9wcBtj3tAmZbfGg7xjFk9NWOKTzZ4A80OKky</recordid><startdate>20210614</startdate><enddate>20210614</enddate><creator>Hara, Toshiro</creator><creator>Chanoch-Myers, Rony</creator><creator>Mathewson, Nathan D.</creator><creator>Myskiw, Chad</creator><creator>Atta, Lyla</creator><creator>Bussema, Lillian</creator><creator>Eichhorn, Stephen W.</creator><creator>Greenwald, Alissa C.</creator><creator>Kinker, Gabriela S.</creator><creator>Rodman, Christopher</creator><creator>Gonzalez Castro, L. Nicolas</creator><creator>Wakimoto, Hiroaki</creator><creator>Rozenblatt-Rosen, Orit</creator><creator>Zhuang, Xiaowei</creator><creator>Fan, Jean</creator><creator>Hunter, Tony</creator><creator>Verma, Inder M.</creator><creator>Wucherpfennig, Kai W.</creator><creator>Regev, Aviv</creator><creator>Suvà, Mario L.</creator><creator>Tirosh, Itay</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8895-2609</orcidid><orcidid>https://orcid.org/0000-0002-4389-3393</orcidid><orcidid>https://orcid.org/0000-0002-6113-0082</orcidid><orcidid>https://orcid.org/0000-0001-5469-3816</orcidid><orcidid>https://orcid.org/0000-0002-8197-5795</orcidid><orcidid>https://orcid.org/0000-0001-7699-5188</orcidid><orcidid>https://orcid.org/0000-0002-4059-075X</orcidid></search><sort><creationdate>20210614</creationdate><title>Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma</title><author>Hara, Toshiro ; Chanoch-Myers, Rony ; Mathewson, Nathan D. ; Myskiw, Chad ; Atta, Lyla ; Bussema, Lillian ; Eichhorn, Stephen W. ; Greenwald, Alissa C. ; Kinker, Gabriela S. ; Rodman, Christopher ; Gonzalez Castro, L. Nicolas ; Wakimoto, Hiroaki ; Rozenblatt-Rosen, Orit ; Zhuang, Xiaowei ; Fan, Jean ; Hunter, Tony ; Verma, Inder M. ; Wucherpfennig, Kai W. ; Regev, Aviv ; Suvà, Mario L. ; Tirosh, Itay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-7bcf04dc70c9303da5ec32cf50758e312df00b68590eb6193c0b22425cf724a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - immunology</topic><topic>Brain Neoplasms - pathology</topic><topic>Cells, Cultured</topic><topic>Cytokine Receptor gp130 - genetics</topic><topic>Cytokine Receptor gp130 - metabolism</topic><topic>Cytotoxicity, Immunologic</topic><topic>GBM</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>glioblastoma</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - immunology</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>Leukemia Inhibitory Factor Receptor alpha Subunit - genetics</topic><topic>Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism</topic><topic>macrophage</topic><topic>mesenchymal</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Oncostatin M - metabolism</topic><topic>Oncostatin M Receptor beta Subunit - genetics</topic><topic>Oncostatin M Receptor beta Subunit - metabolism</topic><topic>OSM</topic><topic>scRNA-seq</topic><topic>STAT3 Transcription Factor - genetics</topic><topic>STAT3 Transcription Factor - metabolism</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumor Microenvironment</topic><topic>Tumor-Associated Macrophages - immunology</topic><topic>Tumor-Associated Macrophages - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Toshiro</creatorcontrib><creatorcontrib>Chanoch-Myers, Rony</creatorcontrib><creatorcontrib>Mathewson, Nathan D.</creatorcontrib><creatorcontrib>Myskiw, Chad</creatorcontrib><creatorcontrib>Atta, Lyla</creatorcontrib><creatorcontrib>Bussema, Lillian</creatorcontrib><creatorcontrib>Eichhorn, Stephen W.</creatorcontrib><creatorcontrib>Greenwald, Alissa C.</creatorcontrib><creatorcontrib>Kinker, Gabriela S.</creatorcontrib><creatorcontrib>Rodman, Christopher</creatorcontrib><creatorcontrib>Gonzalez Castro, L. Nicolas</creatorcontrib><creatorcontrib>Wakimoto, Hiroaki</creatorcontrib><creatorcontrib>Rozenblatt-Rosen, Orit</creatorcontrib><creatorcontrib>Zhuang, Xiaowei</creatorcontrib><creatorcontrib>Fan, Jean</creatorcontrib><creatorcontrib>Hunter, Tony</creatorcontrib><creatorcontrib>Verma, Inder M.</creatorcontrib><creatorcontrib>Wucherpfennig, Kai W.</creatorcontrib><creatorcontrib>Regev, Aviv</creatorcontrib><creatorcontrib>Suvà, Mario L.</creatorcontrib><creatorcontrib>Tirosh, Itay</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Toshiro</au><au>Chanoch-Myers, Rony</au><au>Mathewson, Nathan D.</au><au>Myskiw, Chad</au><au>Atta, Lyla</au><au>Bussema, Lillian</au><au>Eichhorn, Stephen W.</au><au>Greenwald, Alissa C.</au><au>Kinker, Gabriela S.</au><au>Rodman, Christopher</au><au>Gonzalez Castro, L. Nicolas</au><au>Wakimoto, Hiroaki</au><au>Rozenblatt-Rosen, Orit</au><au>Zhuang, Xiaowei</au><au>Fan, Jean</au><au>Hunter, Tony</au><au>Verma, Inder M.</au><au>Wucherpfennig, Kai W.</au><au>Regev, Aviv</au><au>Suvà, Mario L.</au><au>Tirosh, Itay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma</atitle><jtitle>Cancer cell</jtitle><addtitle>Cancer Cell</addtitle><date>2021-06-14</date><risdate>2021</risdate><volume>39</volume><issue>6</issue><spage>779</spage><epage>792.e11</epage><pages>779-792.e11</pages><issn>1535-6108</issn><eissn>1878-3686</eissn><abstract>The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.
[Display omitted]
•Macrophages induce the MES-like state of glioblastoma cells•Induction is mediated by macrophage-derived OSM interacting with OSMR/LIFR-GP130•Subsets of glioblastoma-associated macrophages express a related MES-like program•The MES-like state in glioblastoma is associated with cytotoxic T cells programs
Hara et al. combine single-cell RNA sequencing and functional experiments to explore the crosstalk between glioblastoma and the microenvironment, revealing that macrophage-derived OSM induces the mesenchymal-like state of glioblastoma, a state associated with upregulation of major histocompatibility complex genes, and with potential implications for immunotherapy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34087162</pmid><doi>10.1016/j.ccell.2021.05.002</doi><orcidid>https://orcid.org/0000-0002-8895-2609</orcidid><orcidid>https://orcid.org/0000-0002-4389-3393</orcidid><orcidid>https://orcid.org/0000-0002-6113-0082</orcidid><orcidid>https://orcid.org/0000-0001-5469-3816</orcidid><orcidid>https://orcid.org/0000-0002-8197-5795</orcidid><orcidid>https://orcid.org/0000-0001-7699-5188</orcidid><orcidid>https://orcid.org/0000-0002-4059-075X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-6108 |
ispartof | Cancer cell, 2021-06, Vol.39 (6), p.779-792.e11 |
issn | 1535-6108 1878-3686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8366750 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Brain Neoplasms - genetics Brain Neoplasms - immunology Brain Neoplasms - pathology Cells, Cultured Cytokine Receptor gp130 - genetics Cytokine Receptor gp130 - metabolism Cytotoxicity, Immunologic GBM Gene Expression Regulation, Neoplastic glioblastoma Glioblastoma - genetics Glioblastoma - immunology Glioblastoma - pathology Humans Leukemia Inhibitory Factor Receptor alpha Subunit - genetics Leukemia Inhibitory Factor Receptor alpha Subunit - metabolism macrophage mesenchymal Mice Mice, Inbred C57BL Mice, Transgenic Oncostatin M - metabolism Oncostatin M Receptor beta Subunit - genetics Oncostatin M Receptor beta Subunit - metabolism OSM scRNA-seq STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism T-Lymphocytes - immunology Tumor Microenvironment Tumor-Associated Macrophages - immunology Tumor-Associated Macrophages - pathology |
title | Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20between%20cancer%20cells%20and%20immune%20cells%20drive%20transitions%20to%20mesenchymal-like%20states%20in%20glioblastoma&rft.jtitle=Cancer%20cell&rft.au=Hara,%20Toshiro&rft.date=2021-06-14&rft.volume=39&rft.issue=6&rft.spage=779&rft.epage=792.e11&rft.pages=779-792.e11&rft.issn=1535-6108&rft.eissn=1878-3686&rft_id=info:doi/10.1016/j.ccell.2021.05.002&rft_dat=%3Cproquest_pubme%3E2537631103%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2537631103&rft_id=info:pmid/34087162&rft_els_id=S1535610821002683&rfr_iscdi=true |