Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma
The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and...
Gespeichert in:
Veröffentlicht in: | Cancer cell 2021-06, Vol.39 (6), p.779-792.e11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.
[Display omitted]
•Macrophages induce the MES-like state of glioblastoma cells•Induction is mediated by macrophage-derived OSM interacting with OSMR/LIFR-GP130•Subsets of glioblastoma-associated macrophages express a related MES-like program•The MES-like state in glioblastoma is associated with cytotoxic T cells programs
Hara et al. combine single-cell RNA sequencing and functional experiments to explore the crosstalk between glioblastoma and the microenvironment, revealing that macrophage-derived OSM induces the mesenchymal-like state of glioblastoma, a state associated with upregulation of major histocompatibility complex genes, and with potential implications for immunotherapy. |
---|---|
ISSN: | 1535-6108 1878-3686 |
DOI: | 10.1016/j.ccell.2021.05.002 |