A Retrospective Look at the Impact of Binding Site Environment on the Optimization of TRPA1 Antagonists

Transient receptor potential ankyrin 1 (TRPA1) antagonists have generated broad interest in the pharmaceutical industry for the treatment of both pain and asthma. Over the past decade, multiple antagonist classes have been reported in the literature with a wide range of structural diversity. Our own...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS medicinal chemistry letters 2021-08, Vol.12 (8), p.1230-1237
Hauptverfasser: Villemure, Elisia, Terrett, Jack A, Larouche-Gauthier, Robin, Déry, Martin, Chen, Huifen, Reese, Rebecca M, Shields, Shannon D, Chen, Jun, Magnuson, Steven, Volgraf, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transient receptor potential ankyrin 1 (TRPA1) antagonists have generated broad interest in the pharmaceutical industry for the treatment of both pain and asthma. Over the past decade, multiple antagonist classes have been reported in the literature with a wide range of structural diversity. Our own work has focused on the development of proline sulfonamide and hypoxanthine-based antagonists, two antagonist classes with distinct physicochemical properties and pharmacokinetic (PK) trends. Late in our discovery program, cryogenic electron microscopy (cryoEM) studies revealed two different antagonist binding sites: a membrane-exposed proline sulfonamide transmembrane site and an intracellular hypoxanthine site near the membrane interface. A retrospective look at the discovery program reveals how the different binding sites, and their location relative to the cell membrane, influenced the optimization trajectories and overall drug profiles of each antagonist class.
ISSN:1948-5875
1948-5875
DOI:10.1021/acsmedchemlett.1c00305