Quantification of dental macrowear using 3D occlusal surface topographic measurements in deciduous and permanent molars of children
Objectives Childhood paleodietary reconstruction via dental macrowear analysis is limited in part by available methods to measure dental macrowear. We describe a method to quantify dental macrowear progression (in both deciduous and permanent molars) using a handheld intraoral scanner and two 3D occ...
Gespeichert in:
Veröffentlicht in: | American journal of physical anthropology 2021-07, Vol.175 (3), p.701-711 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives
Childhood paleodietary reconstruction via dental macrowear analysis is limited in part by available methods to measure dental macrowear. We describe a method to quantify dental macrowear progression (in both deciduous and permanent molars) using a handheld intraoral scanner and two 3D occlusal topographic measurements. We assess the agreement of our macrowear proxies with an established qualitative wear scoring system and their relationship to age.
Material and methods
We scanned 92 well‐preserved dentitions of immature individuals from the medieval cemetery of St. Pölten in Lower Austria using an intraoral scanner. Two measurements were made on the resulting mesh files—the relative flat surface area in % of the occlusal surface (RFSA%) and the mesial interior slope angle. We estimated the technical error of measurement (TEM). Comparisons were made with the macrowear scoring system—tooth wear index.
Results
We found that TEM for both measurements was between 1 and 3%, except the interobserver TEM of RFSA% which was above 5%. Both quantitative measurements generally agree with the established qualitative scores and correlate with age; however, RFSA% does not reliably indicate the progression of macrowear for teeth after dentine exposure occurs.
Discussion
The proposed 3D topographic measurements can be made reliably, and within a certain range of wear provide good quantitative proxies of the progression of dental macrowear. Such measurements constitute a promising approach for improving dental macrowear analysis in contexts such as childhood paleodietary reconstruction, which benefit from additional precision in wear rate estimation and present less dentine exposure. |
---|---|
ISSN: | 0002-9483 1096-8644 2692-7691 |
DOI: | 10.1002/ajpa.24289 |