Pressurized liquid extraction to obtain chia seeds oils extracts enriched in tocochromanols. Nanoemulsions approaches to preserve the antioxidant potential
The objective of this study was to use accelerated-solvent-extraction to achieve antioxidant extracts from chia seeds oils, enriched in tocopherols and tocotrienols, namely tocochromanols. Nanotechnology applications have been also incorporated to develop an innovative formulation of chia seeds oil...
Gespeichert in:
Veröffentlicht in: | Journal of food science and technology 2021-10, Vol.58 (10), p.4034-4044 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to use accelerated-solvent-extraction to achieve antioxidant extracts from chia seeds oils, enriched in tocopherols and tocotrienols, namely tocochromanols. Nanotechnology applications have been also incorporated to develop an innovative formulation of chia seeds oil nanoemulsion that preserve its antioxidant potential after conditions of oxidative stress. Chia seeds oils proved to be a valuable source of tocochromanols, from 568.84 to 855.98 μg g
−1
, depending on the geographical provenance. Quantitative data obtained by LC-DAD-ESI-MS/MS showed outstanding levels of γ-Tocopherol, over 83%, followed far behind by Tocopherols-(α, β, δ) and Tocotrienols-(α, β, δ, γ)-tocotrienols. The characteristic tocochromanols fingerprint of chia seeds oils was positively correlated with the FRAP and DPPH antioxidant activity of the extracts (between 18.81 and 138.48 mg Trolox/g). Formulation of the Chia seeds oils as nanoemulsions did not compromised the antioxidant properties of fresh extracts. Interestingly, nanoemulsions retained about the 80% of the initial antioxidant capacity after UV-induced stress, where the non-emulsified oils displayed a remarkable reduction (50–60%) on its antioxidant capacity under the same conditions. These antioxidant chia seeds formulations can constitute a promising strategy to vectorizing vitamin E isomers, in order to be used for food fortification, natural additives and to increase the self-life of food products during packing.
Graphic abstract |
---|---|
ISSN: | 0022-1155 0975-8402 |
DOI: | 10.1007/s13197-020-04866-9 |