Are Biological Consequences of Childhood Exposures Detectable in Telomere Length Decades Later?

Abstract Negative early-life exposures have been linked to a host of poor adult health outcomes, but are such early exposures associated with cellular senescence decades later? This study uses data from the Health and Retirement Study to examine the association between six childhood exposure domains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journals of gerontology. Series A, Biological sciences and medical sciences Biological sciences and medical sciences, 2021-01, Vol.76 (1), p.7-14
Hauptverfasser: Kemp, Blakelee R, Ferraro, Kenneth F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Negative early-life exposures have been linked to a host of poor adult health outcomes, but are such early exposures associated with cellular senescence decades later? This study uses data from the Health and Retirement Study to examine the association between six childhood exposure domains (eg, socioeconomic disadvantage, risky parental behavior) and a biomarker of aging, telomere length, among 4,935 respondents. Telomere length is obtained from DNA of cells found in saliva and is measured as the telomere repeat copy number to single gene copy number ratio (T/S). Men who as children were exposed to risky parental behaviors or who reported risky adolescent behaviors have shorter telomeres (b = −0.031, p = .052; b = −0.041, p = .045, respectively); however, these relationships are attenuated after adjusting for adult risks and resources. Among women, parental substance abuse is associated with shorter telomeres even after adjusting for adult risks and resources (b = −0.041, p = .005). In addition, men and women whose mother lived at least until the age of 85 have longer telomeres than those without a long-lived mother (b = 0.021, p = .045; b = 0.032, p = .005, respectively). Taken together, the ways in which early-life exposures are associated with adult telomeres vary for men and women.
ISSN:1079-5006
1758-535X
DOI:10.1093/gerona/glaa019