Investigation of Post-Processing of Additively Manufactured Nitinol Smart Springs with Plasma-Electrolytic Polishing

Additive manufacturing of Nitinol is a promising field, as it can circumvent the challenges associated with its conventional production processes and unlock unique advantages. However, the accompanying surface features such as powder adhesions, spatters, ballings, or oxide discolorations are undesir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-07, Vol.14 (15), p.4093
Hauptverfasser: Stepputat, Vincent N, Zeidler, Henning, Safranchik, Daniel, Strokin, Evgeny, Böttger-Hiller, Falko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Additive manufacturing of Nitinol is a promising field, as it can circumvent the challenges associated with its conventional production processes and unlock unique advantages. However, the accompanying surface features such as powder adhesions, spatters, ballings, or oxide discolorations are undesirable in engineering applications and therefore must be removed. Plasma electrolytic polishing (PeP) might prove to be a suitable finishing process for this purpose, but the effects of post-processing on the mechanical and functional material properties of additively manufactured Nitinol are still largely unresearched. This study seeks to address this issue. The changes on and in the part caused by PeP with processing times between 2 and 20 min are investigated using Nitinol compression springs manufactured by Laser Beam Melting. As a benchmark for the scanning electron microscope images, the differential scanning calorimetry (DSC) measurements, and the mechanical load test cycles, conventionally fabricated Nitinol springs of identical geometry with a medical grade polished surface are used. After 5 min of PeP, a glossy surface free of powder adhesion is achieved, which is increasingly levelled by further polishing. The shape memory properties of the material are retained without a shift in the transformation temperatures being detectable. The decreasing spring rate is primarily attributable to a reduction in the effective wire diameter. Consequently, PeP has proven to be an applicable and effective post-processing method for additively manufactured Nitinol.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14154093