Nonuniform loss of muscle strength and atrophy during bed rest: a systematic review

Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalization (≤5 days) associated with periods of disuse/immobilization/prolonged time in the supine position in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2021-07, Vol.131 (1), p.194-206
Hauptverfasser: Marusic, Uros, Narici, Marco, Simunic, Bostjan, Pisot, Rado, Ritzmann, Ramona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our study contributes to the characterization of muscle loss and weakness processes reflected by a logarithmic decline in muscle strength induced by chronic bed rest. Acute short-term hospitalization (≤5 days) associated with periods of disuse/immobilization/prolonged time in the supine position in the hospital bed is sufficient to significantly decrease muscle mass and size and induce functional changes related to weakness in maximal muscle strength. By bringing together integrated evaluation of muscle structure and function, this work identifies that 79% of the loss in muscle strength can be explained by muscle atrophy, leaving 21% of the functional loss unexplained. The outcomes of this study should be considered in the development of daily countermeasures for preserving neuromuscular integrity as well as preconditioning interventions to be implemented before clinical bed rest or chronic gravitational unloading (e.g., spaceflights). Muscle atrophy and decline in muscle strength appear very rapidly with prolonged disuse or mechanical unloading after acute hospitalization or experimental bed rest. The current study analyzed data from short-, medium-, and long-term bed rest (5–120 days) in a pooled sample of 318 healthy adults and modeled the mathematical relationship between muscle strength decline and atrophy. The results show a logarithmic disuse-induced loss of strength and muscle atrophy of the weight-bearing knee extensor muscles. The greatest rate of muscle strength decline and atrophy occurred in the earliest stages of bed rest, plateauing later, and likely contributed to the rapid neuromuscular loss of function in the early period. In addition, during the first 2 wk of bed rest, muscle strength decline is much faster than muscle atrophy: on day 5, the ratio of muscle atrophy to strength decline as a function of bed rest duration is 4.2, falls to 2.4 on day 14, and stabilizes to a value of 1.9 after ∼35 days of bed rest. Positive regression revealed that ∼79% of the muscle strength loss may be explained by muscle atrophy, while the remaining is most likely due to alterations in single fiber mechanical properties, excitation-contraction coupling, fiber architecture, tendon stiffness, muscle denervation, neuromuscular junction damage, and supraspinal changes. Future studies should focus on neural factors as well as muscular factors independent of atrophy (single fiber excitability and mechanical properties, architectural factors) and on the role of e
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.00363.2020