Improving the Melt Flow Length of Acrylonitrile Butadiene Styrene in Thin-Wall Injection Molding by External Induction Heating with the Assistance of a Rotation Device

In injection molding, the temperature control of the dynamic mold is an excellent method for improving the melt flow length, especially of thin-wall products. In this study, the heating efficiency of a novel heating strategy based on induction heating was estimated. With the use of this heating stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2021-07, Vol.13 (14), p.2288
Hauptverfasser: Minh, Pham Son, Le, Minh-Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In injection molding, the temperature control of the dynamic mold is an excellent method for improving the melt flow length, especially of thin-wall products. In this study, the heating efficiency of a novel heating strategy based on induction heating was estimated. With the use of this heating strategy, a molding cycle time similar to the traditional injection molding process could be maintained. In addition, this strategy makes it easier to carry out the heating step due to the separation of the heating position and the mold structure as well as allowing the ease of magnetic control. The results show that, with an initial mold temperature of 30 °C and a gap (G) between the heating surface and the inductor coil of 5 mm, the magnetic heating process can heat the plate to 290 °C within 5 s. However, with a gap of 15 mm, it took up to 8 s to reach 270 °C. According to the measurement results, when the mold heating time during the molding process increased from 0 to 5 s, the flow length increased significantly from 71.5 to 168.1 mm, and the filling percentage of the thin-wall product also increased from 10.2% to 100%. In general, the application of external induction heating (Ex-IH) during the molding cycle resulted in improved melt flow length with minimal increase in the total cycle time, which remained similar to that of the traditional case.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym13142288