Molecular Breeding for Improving Productivity of Oryza sativa L. cv. Pusa 44 under Reproductive Stage Drought Stress through Introgression of a Major QTL, qDTY12.1

Increasing rice production is quintessential to the task of sustaining global food security, as a majority of the global population is dependent on rice as its staple dietary cereal. Among the various constraints affecting rice production, reproductive stage drought stress (RSDS) is a major challeng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2021-06, Vol.12 (7), p.967
Hauptverfasser: Oo, Kyaw Swar, Krishnan, Subbaiyan Gopala, Vinod, Kunnummal Kurungara, Dhawan, Gaurav, Dwivedi, Priyanka, Kumar, Pankaj, Bhowmick, Prolay Kumar, Pal, Madan, Chinnuswamy, Viswanathan, Nagarajan, Mariappan, Bollinedi, Haritha, Ellur, Ranjith Kumar, Singh, Ashok Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing rice production is quintessential to the task of sustaining global food security, as a majority of the global population is dependent on rice as its staple dietary cereal. Among the various constraints affecting rice production, reproductive stage drought stress (RSDS) is a major challenge, due to its direct impact on grain yield. Several quantitative trait loci (QTLs) conferring RSDS tolerance have been identified in rice, and is one of the major QTLs reported. We report the successful introgression of into Pusa 44, a drought sensitive mega rice variety of the northwestern Indian plains. Marker-assisted backcross breeding (MABB) was adopted to transfer into Pusa 44 in three backcrosses followed by four generations of pedigree selection, leading to development of improved near isogenic lines (NILs). Having a recurrent parent genome (RPG) recovery ranging from 94.7-98.7%, the improved NILs performed 6.5 times better than Pusa 44 under RSDS, coupled with high yield under normal irrigated conditions. The MABB program has been modified so as to defer background selection until BC F to accelerate generational advancements. Deploying phenotypic selection alone in the early backcross generations could help in the successful recovery of RPG. In addition, the grain quality could be recovered in the improved NILs, leading to superior selections. Owing to their improved adaptation to drought, the release of improved NILs for regions prone to intermittent drought can help enhance rice productivity and production.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes12070967