Repeated but Not Single Administration of Ketamine Prolongs Increases of the Firing Activity of Norepinephrine and Dopamine Neurons
Abstract Background Clinical studies have shown that the rapid antidepressant effect of the glutamate N-methyl-D-aspartate receptor antagonist ketamine generally disappears within 1 week but can be maintained by repeated administration. Preclinical studies showed that a single ketamine injection imm...
Gespeichert in:
Veröffentlicht in: | The international journal of neuropsychopharmacology 2021-07, Vol.24 (7), p.570-579 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background
Clinical studies have shown that the rapid antidepressant effect of the glutamate N-methyl-D-aspartate receptor antagonist ketamine generally disappears within 1 week but can be maintained by repeated administration. Preclinical studies showed that a single ketamine injection immediately increases the firing and burst activity of norepinephrine (NE) neurons, but not that of serotonin (5-HT) neurons. It also enhances the population activity of dopamine (DA) neurons. In the present study, we investigated whether such alterations of monoamine neuronal firing are still present 1 day after a single injection, and whether they can be maintained by repeated injections.
Methods
Rats received a single ketamine injection or 6 over 2 weeks and the firing activity of dorsal raphe nucleus 5-HT, locus coeruleus NE, and ventral tegmental area DA neurons was assessed.
Results
One day following a single injection of ketamine, there was no change in the firing activity of 5-HT, NE, or DA neurons. One day after repeated ketamine administration, however, there was a robust increase of the firing activity of NE neurons and an enhancement of burst and population activities of DA neurons, but still no change in firing parameters of 5-HT neurons. The increased activity of NE neurons was no longer present 3 days after the last injection, whereas that of DA neurons was still present. DA neurons were firing normally 7 days after repeated injections.
Conclusion
These results imply that the enhanced activity of NE and DA neurons may play a significant role in the maintenance of the antidepressant action of ketamine. |
---|---|
ISSN: | 1461-1457 1469-5111 |
DOI: | 10.1093/ijnp/pyab010 |