Capsule networks for segmentation of small intravascular ultrasound image datasets

Purpose Intravascular ultrasound (IVUS) imaging is crucial for planning and performing percutaneous coronary interventions. Automatic segmentation of lumen and vessel wall in IVUS images can thus help streamlining the clinical workflow. State-of-the-art results in image segmentation are achieved wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2021-08, Vol.16 (8), p.1243-1254
Hauptverfasser: Bargsten, Lennart, Raschka, Silas, Schlaefer, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Intravascular ultrasound (IVUS) imaging is crucial for planning and performing percutaneous coronary interventions. Automatic segmentation of lumen and vessel wall in IVUS images can thus help streamlining the clinical workflow. State-of-the-art results in image segmentation are achieved with data-driven methods like convolutional neural networks (CNNs). These need large amounts of training data to perform sufficiently well but medical image datasets are often rather small. A possibility to overcome this problem is exploiting alternative network architectures like capsule networks. Methods We systematically investigated different capsule network architecture variants and optimized the performance on IVUS image segmentation. We then compared our capsule network with corresponding CNNs under varying amounts of training images and network parameters. Results Contrary to previous works, our capsule network performs best when doubling the number of capsule types after each downsampling stage, analogous to typical increase rates of feature maps in CNNs. Maximum improvements compared to the baseline CNNs are 20.6% in terms of the Dice coefficient and 87.2% in terms of the average Hausdorff distance. Conclusion Capsule networks are promising candidates when it comes to segmentation of small IVUS image datasets. We therefore assume that this also holds for ultrasound images in general. A reasonable next step would be the investigation of capsule networks for few- or even single-shot learning tasks.
ISSN:1861-6410
1861-6429
DOI:10.1007/s11548-021-02417-x