Liquid–liquid phase separation of full-length prion protein initiates conformational conversion in vitro
Prion diseases are characterized by the accumulation of amyloid fibrils. The causative agent is an infectious amyloid that comprises solely misfolded prion protein (PrPSc). Prions can convert normal cellular prion protein (PrPC) to protease K-resistance prion protein fragment (PrP-res) in vitro; how...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2021-01, Vol.296, p.100367, Article 100367 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prion diseases are characterized by the accumulation of amyloid fibrils. The causative agent is an infectious amyloid that comprises solely misfolded prion protein (PrPSc). Prions can convert normal cellular prion protein (PrPC) to protease K-resistance prion protein fragment (PrP-res) in vitro; however, the intermediate steps involved in this spontaneous conversion still remain unknown. We investigated whether recombinant prion protein (rPrP) can directly convert into PrP-res via liquid–liquid phase separation (LLPS) in the absence of PrPSc. We found that rPrP underwent LLPS at the interface of the aqueous two-phase system of polyethylene glycol and dextran, whereas single-phase conditions were not inducible. Fluorescence recovery assay after photobleaching revealed that the liquid–solid phase transition occurred within a short time. The aged rPrP-gel acquired a proteinase-resistant amyloid accompanied by β-sheet conversion, as confirmed by Western blotting, Fourier transform infrared spectroscopy, and Congo red staining. The reactions required both the N-terminal region of rPrP (amino acids 23–89) and kosmotropic salts, suggesting that the kosmotropic anions may interact with the N-terminal region of rPrP to promote LLPS. Thus, structural conversion via LLPS and liquid–solid phase transition could be the intermediate steps in the conversion of prions. |
---|---|
ISSN: | 0021-9258 1083-351X 1083-351X |
DOI: | 10.1016/j.jbc.2021.100367 |