Light-Modulated Sunscreen Mechanism in the Retina of the Human Eye

The functioning of the human eye in the extreme range of light intensity requires a combination of the high sensitivity of photoreceptors with their photostability. Here, we identify a regulatory mechanism based on dynamic modulation of light absorption by xanthophylls in the retina, realized by reo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-06, Vol.125 (23), p.6090-6102
Hauptverfasser: Luchowski, Rafal, Grudzinski, Wojciech, Welc, Renata, Mendes Pinto, Maria Manuela, Sek, Alicja, Ostrowski, Jan, Nierzwicki, Lukasz, Chodnicki, Pawel, Wieczor, Milosz, Sowinski, Karol, Rejdak, Robert, Juenemann, Anselm G. M, Teresinski, Grzegorz, Czub, Jacek, Gruszecki, Wieslaw I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The functioning of the human eye in the extreme range of light intensity requires a combination of the high sensitivity of photoreceptors with their photostability. Here, we identify a regulatory mechanism based on dynamic modulation of light absorption by xanthophylls in the retina, realized by reorientation of pigment molecules induced by trans–cis photoisomerization. We explore this photochemically switchable system using chromatographic analysis coupled with microimaging based on fluorescence lifetime and Raman scattering, showing it at work in both isolated human retina and model lipid membranes. The molecular mechanism underlying xanthophyll reorientation is explained in terms of hydrophobic mismatch using molecular dynamics simulations. Overall, we show that xanthophylls in the human retina act as “molecular blinds”, opening and closing on a submillisecond timescale to dynamically control the intensity of light reaching the photoreceptors, thus enabling vision at a very low light intensity and protecting the retina from photodegradation when suddenly exposed to strong light.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.1c01198