Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5 GABA-A Receptor Potentiation
Abstract Introduction Deficits in somatostatin-positive gamma-aminobutyric acid interneurons (SST+ GABA cells) are commonly reported in human studies of mood and anxiety disorder patients. A causal link between SST+ cell dysfunction and symptom-related behaviors has been proposed based on rodent stu...
Gespeichert in:
Veröffentlicht in: | The international journal of neuropsychopharmacology 2021-06, Vol.24 (6), p.505-518 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Introduction
Deficits in somatostatin-positive gamma-aminobutyric acid interneurons (SST+ GABA cells) are commonly reported in human studies of mood and anxiety disorder patients. A causal link between SST+ cell dysfunction and symptom-related behaviors has been proposed based on rodent studies showing that chronic stress, a major risk factor for mood and anxiety disorders, induces a low SST+ GABA cellular phenotype across corticolimbic brain regions; that lowering Sst, SST+ cell, or GABA functions induces depressive-/anxiety-like behaviors (a rodent behavioral construct collectively defined as “behavioral emotionality”); and that disinhibiting SST+ cells has antidepressant-like effects. Recent studies found that compounds preferentially potentiating receptors mediating SST+ cell functions, α5-GABAA receptor positive allosteric modulators (α5-PAMs), achieved antidepressant-like effects. Together, the evidence suggests that SST+ cells regulate mood and cognitive functions that are disrupted in mood disorders and that rescuing SST+ cell function via α5-PAM may represent a targeted therapeutic strategy.
Methods
We developed a mouse model allowing chemogenetic manipulation of brain-wide SST+ cells and employed behavioral characterization 30 minutes after repeated acute silencing to identify contributions to symptom-related behaviors. We then assessed whether an α5-PAM, GL-II-73, could rescue behavioral deficits.
Results
Brain-wide SST+ cell silencing induced features of stress-related illnesses, including elevated neuronal activity and plasma corticosterone levels, increased anxiety- and anhedonia-like behaviors, and impaired short-term memory. GL-II-73 led to antidepressant- and anxiolytic-like improvements among behavioral deficits induced by brain-wide SST+ cell silencing.
Conclusion
Our data validate SST+ cells as regulators of mood and cognitive functions and demonstrate that bypassing low SST+ cell function via α5-PAM represents a targeted therapeutic strategy. |
---|---|
ISSN: | 1461-1457 1469-5111 |
DOI: | 10.1093/ijnp/pyab002 |