A Co-Culture Method to Study Neurite Outgrowth in Response to Dental Pulp Paracrine Signals

Tooth innervation allows teeth to sense pressure, temperature and inflammation, all of which are crucial to the use and maintenance of the tooth organ. Without sensory innervation, daily oral activities would cause irreparable damage. Despite its importance, the roles of innervation in tooth develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Visualized Experiments 2020-02 (156)
Hauptverfasser: Barkley, Courtney, Serra, Rosa, Peters, Sarah B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tooth innervation allows teeth to sense pressure, temperature and inflammation, all of which are crucial to the use and maintenance of the tooth organ. Without sensory innervation, daily oral activities would cause irreparable damage. Despite its importance, the roles of innervation in tooth development and maintenance have been largely overlooked. Several studies have demonstrated that DP cells secrete extracellular matrix proteins and paracrine signals to attract and guide TG axons into and throughout the tooth. However, few studies have provided detailed insight into the crosstalk between the DP mesenchyme and neuronal afferents. To address this gap in knowledge, researchers have begun to utilize co-cultures and a variety of techniques to investigate these interactions. Here, we demonstrate the multiple steps involved in co-culturing primary DP cells with TG neurons dispersed on an overlying transwell filter with large diameter pores to allow axonal growth through the pores. Primary DP cells with the gene of interest flanked by loxP sites were utilized to facilitate gene deletion using an Adenovirus-Cre-GFP recombinase system. Using TG neurons from the Thy1-YFP mouse allowed for precise afferent imaging, with expression well above background levels by confocal microscopy. The DP responses can be investigated via protein or RNA collection and analysis, or alternatively, through immunofluorescent staining of DP cells plated on removable glass coverslips. Media can be analyzed using techniques such as proteomic analyses, although this will require albumin depletion due to the presence of fetal bovine serum in the media. This protocol provides a simple method that can be manipulated to study the morphological, genetic, and cytoskeletal responses of TG neurons and DP cells in response to the controlled environment of a co-culture assay.
ISSN:1940-087X
1940-087X
DOI:10.3791/60809